![一轮复习课件第四章第3讲导数的综合应用.ppt_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-3/4/1ae549fc-b0aa-4913-9886-d3a7011e3945/1ae549fc-b0aa-4913-9886-d3a7011e39451.gif)
![一轮复习课件第四章第3讲导数的综合应用.ppt_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-3/4/1ae549fc-b0aa-4913-9886-d3a7011e3945/1ae549fc-b0aa-4913-9886-d3a7011e39452.gif)
![一轮复习课件第四章第3讲导数的综合应用.ppt_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-3/4/1ae549fc-b0aa-4913-9886-d3a7011e3945/1ae549fc-b0aa-4913-9886-d3a7011e39453.gif)
![一轮复习课件第四章第3讲导数的综合应用.ppt_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-3/4/1ae549fc-b0aa-4913-9886-d3a7011e3945/1ae549fc-b0aa-4913-9886-d3a7011e39454.gif)
![一轮复习课件第四章第3讲导数的综合应用.ppt_第5页](http://file1.renrendoc.com/fileroot_temp2/2020-3/4/1ae549fc-b0aa-4913-9886-d3a7011e3945/1ae549fc-b0aa-4913-9886-d3a7011e39455.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第3讲,导数的综合应用,1求参数的取值范围,与导数相关的参数范围问题是高考中考查的一个重点,大多给出函数的单调性,属运用导数研究函数单调性的逆向问题,解题关键在于灵活运用等价转化、分类讨论、数形结合等思想方法,建立关于字母参数的不等关系,2用导数方法证不等式,用导数证不等式的一般步骤是:构造可导函数研究单调性,或最值得出不等关系整理得出结论,3平面图形面积的最值问题,此类问题的求解关键在于根据几何知识建立函数关系,然后运用导数方法求最值上述三类问题,在近几年的高考中都是综合题,难度较大,体现了在知识交汇点处命题的思路,注重考查综合解题能力和创新意识,复习时要引起重视,4利用导数解决生活中的优化
2、问题,优化问题可归结为函数的最值问题,从而可用导数来解决用导数解决优化问题,即求实际问题中的最大(小)值的主要步骤如下:,(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系yf(x),即将优化问题归结为函数最值问题;,(2)求导数f(x),解方程f(x)0;,(3)比较函数在区间端点和使f(x)0的点的函数值大小,最,大者为最大值,最小者为最小值;,(4)检验作答,即获得优化问题的答案,A,则物体在t3s的瞬时速度为(A30C45,)B40D50,2函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图431,则函数f(x)在开
3、区间(a,b)内有极小值点,(,),A,图431,A1个,B2个,C3个,D4个,3函数f(x)x3ax23x9,已知f(x)在x3时取极值,,则a(,),D,A2,B3,C4,D5,4函数f(x)12xx3在区间3,3上的最小值是_.5曲线yxex2x1在点(0,1)处的切线方程为_.,16,y3x1,考点1求参数的范围问题,答案:C,【互动探究】,(1)对于任意实数x,f(x)m恒成立,求m的最大值;(2)若方程f(x)0有且仅有一个实根,求a的取值范围,考点2利用导数证明不等式问题,【互动探究】,考点3,利用导数解决实际优化问题,例3:(2011年江苏)请你设计一个包装盒,如图432所示
4、,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的一个等腰直角三角形斜边的两个端点设AEFBxcm.(1)某广告商要求包装盒的侧面积Scm2最大,试问x应取何值?(2)某厂商要求包装盒的容积Vcm3最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值,解析:设包装盒的高为h(cm),底面边长为a(cm),,(1)S4ah8x(30x)8(x15)21800,所以当x15时,S取得最大值,图432,引入恰当的变量、建立适当的模型是解题的关键
5、第(1)中侧面积S是关于x的二次函数,可以利用抛物线的性质求最值,也可以利用导数求解;而第(2)题中容积V是关于x的三次函数,因此只能利用导数求最值,【互动探究】3一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,为使行驶每公里的费用总和最小,,),则此轮船的航行速度为(A10公里/小时B15公里/小时C20公里/小时D25公里/小时,答案:,思想与方法,8利用数形结合思想讨论函数的图象及性质,例题:(2011年“江南十校”联考)已知函数f(x)ax3bx2cx在x1处取得极值,且在x0处的切线的斜率为3.,
6、(1)求f(x)的解析式;,(2)若过点A(2,m)可作曲线yf(x)的三条切线,求实数m的,取值范围,m的取值范围是(6,2),图433,令g(x)2x36x26,则g(x)6x212x6x(x2)由g(x)0得x0或x2.g(x)极小值g(0)6,g(x)极大值g(2)2.画出草图知(如图433),当6m2时,m2x36x26有三解,,关于导数的应用,课标要求,(1)了解函数的单调性与导数的关系,能利用导数研究函数的,单调性,会求不超过三次的多项式函数的单调区间,(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数的最大值、最小值,(3)体会导数方法在研究函数性质中的一般性和有效性,体会,导数在解决实际问题中的作用,1用导数求最值时,要步骤规范、表格齐全;若解析式中含,有参数,要注意讨论参数的大小,2如果连续函数在某区间内只有一个极值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南轻工职业学院《蛋白质化学》2023-2024学年第二学期期末试卷
- 广西制造工程职业技术学院《工作坊》2023-2024学年第二学期期末试卷
- 黑龙江外国语学院《精神病学基础》2023-2024学年第二学期期末试卷
- 呼和浩特民族学院《Photoshop图像处理》2023-2024学年第二学期期末试卷
- 烟台职业学院《VI设计》2023-2024学年第二学期期末试卷
- 郑州铁路职业技术学院《Python编程基础》2023-2024学年第二学期期末试卷
- 江西服装学院《传统运动养生学》2023-2024学年第二学期期末试卷
- 江西枫林涉外经贸职业学院《新能源汽车工程专业导论》2023-2024学年第二学期期末试卷
- 黄冈师范学院《多文体写作(上)》2023-2024学年第二学期期末试卷
- 2023-2024学年江西省上饶艺术学校高二下学期期初适应性检测考试语文试卷
- 汉声数学图画电子版4册含妈妈手册文本不加密可版本-29.统计2500g早教
- 初中化学方程式汇总(鲁教版)
- 企业组织架构表
- 中国监察制度史
- 民俗学概论 第一章 概述课件
- 卫生院基本药物采购供应管理制度
- 搬家公司简介(15个范本)
- 典范英语-2备课材料2a课件
- 抽水蓄能辅助洞室施工方案
- 数据结构英文教学课件:chapter7 Searching
- 幼儿园中班体育活动动作目标及指导要点
评论
0/150
提交评论