




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市第五十五中学2025年高三4月模拟考试数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为()A. B. C. D.2.在中,点为中点,过点的直线与,所在直线分别交于点,,若,,则的最小值为()A. B.2 C.3 D.3.下列不等式成立的是()A. B. C. D.4.某几何体的三视图如图所示,则该几何体的体积为()A. B.3 C. D.45.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.06.费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()A. B. C. D.7.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足的大学生使用主要玩游戏;③可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为()A. B. C. D.8.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条()A.36 B.21 C.12 D.69.已知命题p:直线a∥b,且b⊂平面α,则a∥α;命题q:直线l⊥平面α,任意直线m⊂α,则l⊥m.下列命题为真命题的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)10.《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体平均水平优于甲11.设,则,则()A. B. C. D.12.已知抛物线C:,过焦点F的直线l与抛物线C交于A,B两点(A在x轴上方),且满足,则直线l的斜率为()A.1 B.C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.在面积为的中,,若点是的中点,点满足,则的最大值是______.14.展开式中的系数为_______________.15.已知向量,,若向量与向量平行,则实数___________.16.在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8.则该农作物的年平均产量是______吨.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的等差数列.(1)若数列是常数列,,,求数列的通项公式;(2)若是不为零的常数),求证:数列是等差数列;(3)若(为常数,),.求证:对任意的恒成立.18.(12分)在中,角A、B、C的对边分别为a、b、c,且.(1)求角A的大小;(2)若,的平分线与交于点D,与的外接圆交于点E(异于点A),,求的值.19.(12分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.20.(12分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.21.(12分)设函数.(1)若,求函数的值域;(2)设为的三个内角,若,求的值;22.(10分)等差数列的前项和为,已知,.(1)求数列的通项公式;(2)设数列{}的前项和为,求使成立的的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.【详解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作轴//,建立空间直角坐标系如图设,所以则所以所以故选:C本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.2.B【解析】
由,,三点共线,可得,转化,利用均值不等式,即得解.【详解】因为点为中点,所以,又因为,,所以.因为,,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1.故选:B本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3.D【解析】
根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.【详解】对于,,,错误;对于,在上单调递减,,错误;对于,,,,错误;对于,在上单调递增,,正确.故选:.本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.4.C【解析】
首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所示:故:.故选:C.本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.5.B【解析】
先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.本题考查向量的几何意义,考查投影公式的应用,是基础题.6.B【解析】
基本事件总数,能表示为两个不同费马素数的和只有,,,共有个,根据古典概型求出概率.【详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,,,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:本题考查概率的求法,考查列举法解决古典概型问题,是基础题.7.C【解析】
根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.【详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确;使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误;使用主要找人聊天的大学生人数为,因为,所以③正确.故选:C.本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.8.B【解析】
先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.9.C【解析】
首先判断出为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.【详解】根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.故选:C.本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.10.D【解析】
根据雷达图对选项逐一分析,由此确定叙述正确的选项.【详解】对于A选项,甲的数据分析分,乙的数据分析分,甲低于乙,故A选项错误.对于B选项,甲的建模素养分,乙的建模素养分,甲低于乙,故B选项错误.对于C选项,乙的六大素养中,逻辑推理分,不是最差,故C选项错误.对于D选项,甲的总得分分,乙的总得分分,所以乙的六大素养整体平均水平优于甲,故D选项正确.故选:D本小题主要考查图表分析和数据处理,属于基础题.11.A【解析】
根据换底公式可得,再化简,比较的大小,即得答案.【详解】,,.,显然.,即,,即.综上,.故选:.本题考查换底公式和对数的运算,属于中档题.12.B【解析】
设直线的方程为代入抛物线方程,利用韦达定理可得,,由可知所以可得代入化简求得参数,即可求得结果.【详解】设,(,).易知直线l的斜率存在且不为0,设为,则直线l的方程为.与抛物线方程联立得,所以,.因为,所以,得,所以,即,,所以.故选:B.本题考查直线与抛物线的位置关系,考查韦达定理及向量的坐标之间的关系,考查计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由任意三角形面积公式与构建关系表示|AB||AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【详解】由△ABC的面积为得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①与②的平方和得:|AB||AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.14.【解析】
把按照二项式定理展开,可得的展开式中的系数.【详解】解:,故它的展开式中的系数为,故答案为:.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.15.【解析】
由题可得,因为向量与向量平行,所以,解得.16.10【解析】
根据已知数据直接计算即得.【详解】由题得,.故答案为:10本题考查求平均数,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)详见解析;(3)详见解析.【解析】
(1)根据,可求得,再根据是常数列代入根据通项与前项和的关系求解即可.(2)取,并结合通项与前项和的关系可求得再根据化简可得,代入化简即可知,再证明也成立即可.(3)由(2)当时,,代入所给的条件化简可得,进而证明可得,即数列是等比数列.继而求得,再根据作商法证明即可.【详解】解:.是各项不为零的常数列,则,则由,及得,当时,,两式作差,可得.当时,满足上式,则;证明:,当时,,两式相减得:即.即.又,,即.当时,,两式相减得:.数列从第二项起是公差为的等差数列.又当时,由得,当时,由,得.故数列是公差为的等差数列;证明:由,当时,,即,,,即,即,当时,即.故从第二项起数列是等比数列,当时,..另外,由已知条件可得,又,,因而.令,则.故对任意的恒成立.本题主要考查了等差等比数列的综合运用,需要熟练运用通项与前项和的关系分析数列的递推公式继而求解通项公式或证明等差数列等.同时也考查了数列中的不等式证明等,需要根据题意分析数列为等比数列并求出通项,再利用作商法证明.属于难题.18.(1);(2)【解析】
(1)由,利用正弦定理转化整理为,再利用余弦定理求解.(2)根据,利用两角和的余弦得到,利用数形结合,设,在中,由正弦定理求得,在中,求得再求解.【详解】(1)因为,所以,即,即,所以.(2)∵,.所以,从而.所以,.不妨设,O为外接圆圆心则AO=1,,.在中,由正弦定理知,有.即;在中,由,,从而.所以.本题主要考查平面向量的模的几何意义,还考查了数形结合的方法,属于中档题.19.(1)(2)【解析】试题分析:(1)确定圆的方程,就是确定半径的值,因为直线与圆相切,所以先确定直线方程,即确定点坐标:因为轴,所以,根据对称性,可取,则直线的方程为,根据圆心到切线距离等于半径得(2)根据垂径定理,求直线被圆截得弦长的最大值,就是求圆心到直线的距离的最小值.设直线的方程为,则圆心到直线的距离,利用得,化简得,利用直线方程与椭圆方程联立方程组并结合韦达定理得,因此,当时,取最小值,取最大值为.试题解析:解:(1)因为椭圆的方程为,所以,.因为轴,所以,而直线与圆相切,根据对称性,可取,则直线的方程为,即.由圆与直线相切,得,所以圆的方程为.(2)易知,圆的方程为.①当轴时,,所以,此时得直线被圆截得的弦长为.②当与轴不垂直时,设直线的方程为,,首先由,得,即,所以(*).联立,消去,得,将代入(*)式,得.由于圆心到直线的距离为,所以直线被圆截得的弦长为,故当时,有最大值为.综上,因为,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省泸州市泸县重点名校2025届初三下第六次周考生物试题含解析
- 宁夏长庆高级中学2025届高三第一次高考模拟考试生物试题含解析
- 浙江省金华市聚仁教学集团2025年初三下学期第一次摸底考试英语试题试卷含答案
- 云南省大理白族自治州南涧彝族自治县2024-2025学年五年级数学第二学期期末经典模拟试题含答案
- 辽宁省朝阳市凌源市凌源三中2024-2025学年高三第四次调研考试生物试题含解析
- 电子书销售合同模板
- 个人家具买卖合同
- 二手住宅交易协议样本
- 编剧委托创作合同范本
- 中医病因外感六淫
- 《尼尔斯骑鹅旅行记》读书分享课件
- Unit 2 Morals and Virtues Listening and Speaking教学设计-2024-2025学年人教版高中英语必修第三册
- (统编2024版)语文一年级下册第七单元解析+任务目标+大单元教学设计
- 消毒供应中心外来医疗器械管理
- 第六章学习法治思想提升法治素养讲解
- 医务人员职业暴露的预防及处理课件
- 2025年内蒙古自治区包头市中考试卷数学模拟卷(二)
- 2025年华润燃气招聘笔试参考题库含答案解析
- 《产业经济学》期末考试复习题及答案
- 法定传染病诊断标准2023年
- 高校食堂饭菜价格管理制度
评论
0/150
提交评论