




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ExecutiveSummarylanguagemodelshavegarneredinteresttotheirremarkable
to“generate”human-likeresponsestonaturallanguagequeries—athreshold
onetimewasconsidered“proof”ofsentience—performothertime-saving
tasks.Indeed,LLMsregardedbymanyorthe,pathwaytogeneralartificial
intelligence(GAI)—hypothesizedstatewherecomputers(orevenexceed)
skillsmostortasks.ThelureofAI’sholygrailthroughLLMsdrawninvestmentinthebillions
ofbythosefocusedonthistheUnitedStatesEuropeespecially,big
privatesectorcompaniesledthewayandtheirfocusonLLMsovershadowed
researchonotherapproachestoGAI,despiteLLM’sknowndownsidessuchcost,
powerconsumption,or“hallucinatory”output,deficitsinreasoning
abilities.thesecompanies’betsonLLMsfailtodeliveronexpectationsofprogress
GAI,westernAIdevelopersbepositionedtofallbackon
approaches.contrast,Chinafollowsastate-driven,diverseAIdevelopmentLiketheUnited
States,investsinLLMsbutsimultaneouslypursuestoGAI,
thosemoreexplicitlybrain-inspired.Thisreportdrawsonpublicstatements
bytopscientists,theirassociatedresearch,andongovernment
announcementstodocumentChina’smultifacetedTheChinesegovernmentsponsorsresearchtoinfuse“values”intoAIintendedto
guideautonomousprovideAIsafety,ensureChina’sAI
reflectstheneedsofthepeoplethestate.Thisreportconcludesbyrecommending
U.S.governmentsupportforalternativegeneralAIprogramsforcloserscrutinyof
AIresearch.CenterforSecurityEmergingTechnology|1Introduction:GenerativeAIandAIAchievinggeneralartificialintelligenceorGAI—definedAIthatreplicatesor
exceedsmostcognitiveacrossaoftasks,suchimage/video
understanding,continuallearning,planning,reasoning,skilltransfer,andcreativity1—is
akeystrategicgoalofintenseresearcheffortsbothinChinatheUnitedStates.2
Thereisvigorousdebateintheinternationalscientificcommunityregardingwhichth
leadtoGAImostquicklywhichpathsbestarts.theUnitedStates,
LLMsdominatedthediscussion,yetquestionsremainabouttheirabilityto
achieveGAI.SincechoosingthepathcanpositiontheUnitedStatesa
strategicdisadvantage,thisraisestheurgencyofalternativeapproaches
othercountriesbepursuing.theUnitedStates,expertsbelievethesteptoGAIwilloccur
therolloutofnewversionsofLLMssuchasOpenAI’so1,Google’sGemini,
Anthropic’sClaude,Meta’sLlama.3Othersargue,pointingtopersistentproblems
suchLLMhallucinations,mountofcompute,feedback,ormultimodaldata
sourcesLLMstoachieveGAI.4StillotherAIscientistsseerolesforLLMsin
GAIplatformsbutnottheonly,orevenmain,component.5PonderingthequestionofhowGAIcanbeachievedisimpobecauseittoucheson
optionsavailabletodeveloperspursuingAI’straditionalholygrail—human-level
intelligence.thepath—orapath—toGAIacontinuationofLLMdevelopment,
possiblyaugmentedbymodules?OrLLMsadeadend,necessitating
other,differentapproachesbasedonacloseremulationof
cognitionandbrainfunction?GiventhesuccessofLLMs,thelevelsofinvestment,6endorsementsbyregarded
AIscientists,optimismcreatedbyexamples,thedifficultyofreimagining
newapproachesinthefaceofmodelsinwhichcompaniesgreatcommitment,itis
easytooverlooktheofrelyingona“monoculture”basedonasingleresearch
m.7therearelimitationstoLLMsdeliver,withoutasufficiently
diversifiedesearchportfolio,itisunclearhowwellwesterncompaniesgovernmentsbetopursueothersolutionscanovercomeLLMsproblems
pathwaystoGAI.AdiversifiedresearchportfolioispreciselyChina’sapproachtoitsstate-sponsored
goalofachieving“generalartificialintelligence”通用人工智能.8Thisreportshow
that—inadditiontoChina’sknownprodigiousefforttofieldChatGPTLLMs,9—significantresourcesaredirectedinChinaalternativepathwaystoGAIbyCenterforSecurityEmergingTechnology|2scientistshavewell-foundedconcernsaboutthepotentialof“bigsmall
task”大数据,小任务)approachestoreachhumancapabilities.10Accordingly,thispaperaddressesquestions:criticismsdoChinesescientists
ofLLMstogeneralAI?howisChinamanagingLLMs’alleged
shortcomings?Thepaperbegins(section1)critiquesbyprominentnon-ChinaAIscientistsof
languagemodelstheirtosupportGAI.Thesectionprovidescontext
forviewsofChinesescientiststowardLLMs(section2)describedinsources.
Section3thencitesresearchsupportsChina’spublic-facingclaimsaboutthenon-
viabilityofLLMsapathtoGAI.section4,assesstheseclaimsasafor
recommendationsinsection5onChina’salternativeprojectsmustbetaken
seriously.CenterforSecurityEmergingTechnology|3LargeLanguageModelsTheirCriticsThetermlanguagemodel”capturestheylargenetworkstypically
billionstotrillionsofparameters,theytrainedonnaturallanguage,
terabytesoftextingestedfromtheinternetothersources.LLMs,neural
networks(NN)generally,typologicallydistinctfrom“goodoldfashioned”(GOFAI)
symbolicAIthatdependsonrule-basedcoding.addition,today’slargemodelscan
todifferentdegrees,multimodalinputsoutputs,includingimages,video,
audio.11LLMsdebutedin2017,whenGoogleengineersproposedaNNarchitecture—a
transformer—optimizedtopatternsinsequencesoftextbytoattention”tothecooccurrencerelationshipsbetween“tokens”orof
words)inthetrainingcorpus.12Unlikehumanknowledge,knowledgecapturedinLLMs
isnotobtainedthroughinterionsthenaturalenvironmentbutdependson
probabilitiesderivedfromthepositionalrelationshipsbetweenthetokensin
sequences.MassiveexposuretocorporatrainingallowstheLLMtoidentify
regularitiesintheaggregate,beusedtogenerateresponsestopromptsafterthetraining.Hence,theOpenAIproduct“GPT”(generativepre-
trainedtransformer).TheofLLMsto“blend”differentsourcesofinformation(whichplaysto
strengthsofneuralnetworksinpatternmatchinganduncovering
similaritiesincomplexspaces)hasgiventoapplicationsindiversetext
summarization,translation,codetheoremproving.Yet,itbeenhotlydebatedwhetherthisabilitytoexploitregularitiesis
sufficienttoachieveGAI.Initialenthusiasticreportsthe“sentience”ofLLMs
increasinglysupplementedbyreportsshowingseriousdeficitsinLLMs’abilityto
understandlanguagetoreasoninahuman-like.13SomepersistentinLLMs,inbasicmath,14ppearcorrectablebys,15
i.e.,externalprogramsspecializedforofLLMeaknesses.such—ofanetworkofsystemsspecializedindifferentaspectsofcognition—
wouldbemorelikethewhichhasdedicatedmodules,e.g.,forepisodicmemory,
reasoning,etc.,ratherthanasingleprocessinLLMs.16SomescientistshopeincreasesincomplexityhelpovercomeLLMs’
defects.ForGeoffreyHinton,creditingintuitionofIlyaSutskever(OpenAI’s
formerchiefscientist,studiedHinton),believessolvesomeof
theseproblems.thisview,LLMs“reasoning”byvirtueoftheirability“toCenterforSecurityEmergingTechnology|4predictthenextsymbolpredictionisaprettytheoryofhowtheis
g.”17Indeed,increasesincomplexity(fromGPT-2throughGPT-4)ledto
increasedpeonvariousbenchmarktasks,such“theoryof18
aboutmentalstates),deficitswerenotedforGPT-3.5.19Othersuchdeficitsarehardertoaddressandpersistdespiteincreasesinmodel
complexity.Specifically,“hallucinations,”i.e.,LLMsmakingincorrectclaims(aproblem
inherenttoneuralnetworksthataredesignedtointerpolateunlikethebrain,do
notseparatethestorageoffrominterpolations)errorsinreasoningbeendifficulttoovercome20recentstudiesthatthelikelihoodof
incorrect/hallucinatorysweincreasesgreatermodelcomplexity.21addition,thestrategyofincreasingmodelcomplexityinthehopeofhievingnovel,
qualitativelydifferent“emergent”behaviorsappearonceacomputational
thresholdbeencrossedlikewisebeencalledintoquestionbyresearch
thatpreviouslynoted“emergent”inmodelswereartefactsof
themetricsusednotindicativeofanyqualitativeinmodelperformance.22
Correspondingly,claimsof“emergence”inLLMsdeclinedintherecentliterature,
evenmodelcomplexitiesincreased.23Indeed,thereisthejustifiedconcerntheighperformanceofLLMson
standardizedtestscouldbeascribedmoretothewell-knownpatternmatching
prowessofneuralnetworksthanthediscoveryofnewstrategies.24StillotherofLLMscenteronfundamentalcognitiveandphilosophicalissues
suchtheabilitytogeneralize,formdeepabstractions,create,self-direct,modeltime
space,showcommonsense,reflectontheirownoutput,25manageambiguous
expressions,unlearnbasedonnewinformation,evaluateproconarguments
decisions),graspnuance.26thesedeficitsdiscussedinthewesternresearchliterature,others
suchLLMs’inabilitytoeasilyknowledgebeyondthecontextwindowwithout
thebasemodel,orthecomputationalenergydemandsofLLM
mostcurrentinvestmentofcommercialplayersintheAIspace(e.g.,OpenAI,
Anthropic)iscontinuingdownthissameroad.Theproblemisnotonly“weinvestinginidealfuturemaynotmaterialize”27butratherLLMs,inGoogle
AIresearcherFranoisChollet’swords,“suckedtheoxygenoutoftheroom.Everyone
isdoingLLMs.”28CenterforSecurityEmergingTechnology|5ChineseViewsofasaPathtoGeneralAI(orNot)AreviewofstatementsbyscientiststopAIresearchinstitutes
revealsahighdegreeofskepticismaboutLLMs’tolead,bythemselves,toGAI.
Theseresemblethoseofinternationalexperts,becausebothgroupsthe
problemsbecauseChina’sAIexpertsinteractwiththeirglobalpeersa
matterofcourse.29HerefollowseveralChinesescientists’viewsonLLMsapathtogeneralTang唐杰)isprofessorofcomputerscienceTsinghuaUniversity,thefounderof
智谱),30aleadingfigureintheAcademyofIntelligence(BAAI),31
thedesierofseveralindigenousLLMs.32Despitesuccessstatistical
models,argueshuman-levelAIrequiresthemodelstobe“embodiedinthe
d.”33Althoughbelievesthescalinglaw(规模法则34“stillalongwaytogo,”
onedoesnotguaranteeGAIwillbeachieved.35Amofruitfulpathwouldtake
cuesfrombiology.hiswords:“GAIormachineintelligencebasedonlargemodelsdoesnotnecessarilytobe
thethemechanismofhumanbraincognition,butanalyzingtheofthebrainmaybettertherealizationofGAI.”36ZhangYaqin张亚勤,AKAYa-QinZhang)co-foundedMicrosoftResearchAsiisthe
formerpresidentoffoundingdeanofTsinghua’sInstituteforAIIndustry
Research智能产业研究院)aadvisor.ZhangcitesthreeproblemsLLMs,
namely,theirlowcomputationalefficiency,inabilityto“trulyunderstandthephysical
world,”socalled“boundaryissues”边界问题i.e.,tokenization.37Zhangbelieves
Goertzel)“weneedtoexplorehowtocombinegenerativeprobabilistic
modelsexisting‘firstprinciples’[ofthephysicalworld]orrealmodelsand
knowledges.”38HuangTiejun黄铁军)isfounderformerdirectorofandvicedeanofPeking
University’sInstituteforIntelligence(人工智能研究院Huangnames
threetoGAI:“informationmodels”basedonbigdatabigcompute,
“embodiedmodels”trainedthroughreinforcementbrainemulation—in
astake.39HuangagreesLLMscalinglawswillcontinueto
operatebut“itisnotonlyecessarytocollectstaticdata,butalsotoobtainprocessmultiplesensoryinformationinrealtime.”40Inview,GAIdependson
integratingstatisticalmodelsbrain-inspiredAIandembodiment,CenterforSecurityEmergingTechnology|6LLMsrepresent“staticemergencebasedonbigdat”是基于大数据的静态涌现.
Brain-inspiredintelligence,bycontrast,isbasedoncomplexdynamics.Embodied
intelligencediffersinthatitgeneratesnewabilitiesbyinteractingthe
environment41Bo徐波,deoftheSchoolofArtificialIntelligenceUniversityofChinese
AcademyofSciences(UCAS)中国科学院大学人工智能学院)directorofthe
ChineseAcademyofSciences(CAS)InstituteofAutomation(CASIA,中国科学院自动化
研究所,42Muming蒲慕明,AKAMumingPoo),directorofCAS’sCenterfor
ExcelleinBrainScienceIntelligenceTechnology脑科学与智能技术卓
越创新中心43believeembodimentenvironmentalinteractionfacilitateLLMs’
growthtodGAI.AlthoughtheartificialneuralnetworksonwhichLLMsdepend
wereinspiredbybiology,theybyadding“moreneurons,layersconnections”
donotbegintoemulatethecomplexityofneurontypes,selective
connectivity,modularstructure.particular,“Computationallycostlybackpropagationalgorithms…couldbeimprovedoreven
replacedbyplausiblealgorithms.”Thesecandidatesinclude
spiketimesynapticplasticity,“neuromodulatordependentmetaplasticity”“short-
termvs.long-termmemorystoragerulessetthestabilityofsynaptics.”44ZhuSongchun朱松纯,AKASong-deanofPKU’sInstituteofIntelligencedirectoroftheInstituteforGeneralArtificialIntelligence北京
通用人工智能研究院)foundedonthepremisebigdata-basedLLMsa
dead-endintermsoftheirtoemulatehuman-levelcognition.45pullspunches:“Achievinggeneralartificialintelligenceistheoriginalintentionandultimategoalof
artificialintelligenceresearch,butcontinuingtoexpandtheparameterbasedon
existinglargemodelscannotachievegeneralartificialintelligence.”comparesChina’sLLM’sachievementstoMt.Everest”whenthereal
goalistoreachthemoon.Inview,LLMs“inherentlyuninterpretable,ofdataleakage,donotacognitivearchitecture,lackcausalandmathematical
reasoningcapabilities,otherlimitations,sotheyleadto‘generalartificial
intelligence’.”46ZengYi曾毅,directorofCASIA’sBrain-inspiredCognitiveIntelligence类脑认知
智能实验室foundingdirectorofitsInternationalResearchCenterforAIEthicsCenterforSecurityEmergingTechnology|7Governance,47isbuildingaGAIplatformbasedontime-dependentspikingneural
networks.hiswords:“Ourbraincognitiveintelligenceteamfirmlybelievesonlybythe
structureofthebrainitsintelligentwellthelawsofnaturalevolution,achieveintelligenceistruly
meaningfulbeneficialtohumans.”48ofLLMsbyotherChineseAIscientistslegion.•ShenXiangyang沈向洋,HarryShumAKAHeung-YeungShum),former
MicrosoftexecutiveVPdirectoroftheAcademicCommitteeofPKU’s
InstituteofIntelligence,lamentsAIresearch“clear
understandingoftheofintelligence.”Shensupportsaviewattributes
toNewYorkUniversityprofessoremeritusLLMcriticMarcusthat“no
matterhowChatGPTdevelops,thecurrenttechnicalroutenotbeto
usrealintelligence.”49•Qinghua(郑庆华presidentofTongjiUniversityaChineseAcademy
ofEngineeringacademician,statedthatLLMshaveflaws:theyconsume
toomuchdatacomputingresources,susceptibletocatastrophic
forgetting,logicalreasoningcapabilities,donotknowwhenthey
ortheyareg.50•LiWu李武directoroftheStateKeyLaboratoryofCognitiveNeuroscienceBeijingNormalUniversity,statedhisbelief“currentneural
networksrelativelyspecializeddonotconformtothethehuman
works.youdesperatelyhypethemodelitselfonlyfocusonthe
expansionofparametersfrombillionsortensofbillionstohundredsofbillions,
younotbetoachievetrueintelligence.”51RecognitionoftheneedtosupplementLLMresearchwithalternativetoGAIisevidencedinstatementsbynationalandmunicipalgovernments.On30,2023,citygovernment—whosejurisdictionmuchof
GAI-orientedLLMresearchisplace—issuedastatementcallingfor
developmentofmodelsothergeneralartificialintelligencetechnology
systems”系统构建大模型等通用人工智能技术体系.52Sectionthreefiveitems(7-
11),thefirstfourofwhichpertaintoLLMs(algorithms,trainingdata,evaluation,a
softwarehardwaresystem).Item11reads“exploringnew新路径)for
generalartificialintelligence”andcallsfor:CenterforSecurityEmergingTechnology|8Developingabasictheoreticalsystem基础理论体系)forGAI,autonomous
collaborationdecision-making,embodiedintelligence,brain-inspired类脑)
intelligence,supportedbyaunifiedtheoreticalframework,ratingandtesting
programminglanguages.Embodiedsystems(robots)[trainopenenvironments,generalizedscenarios,continuoustasks.Themandatesthefollowing:“Supporttheexplorationofbrainintelligence,studytheconnectionpatterns,
codingmechanisms,informationprocessingandothercoretechnologiesofneurons,inspirenewartificialneuralnetworkmodelingandtrainingmethods.”AlternativestoLLMswerecitedthenationallevelin2024,whenvice
presidentWu吴朝晖,formerlyviceministerofChina’ssciencepresidentofUniversity),53statedAIismovingtoward“synergybetween
andsmallmodels”大小模型协同,addingChinamust“explorethe
developmentofGAIinmultipleways”多路径地探索通用人工智能发展Thelatter
“embodiedintelligence,distributedgroupintelligence,humanhybrid
intelligence,enhancedintelligence,autonomousdecisionmaking.”54ThefollowingmonthHaidianDistrictgovernment,sdictionover1,300
AIcompanies,morethan90ofdevelopingbigmodels,55issuedathree-year
tofacilitateresearchinembodied具身)AI.Thedefines“embodiment”“theofintelligentsystemormachinetointeracttheenvironmentinreal
timethroughperceptioninteraction”andismeanttoserveaplatformfor
development.Itsdetailsplansforhumanoidrobotsfacilitatedby
replicatingbrainfunctionality.56OuranalysisofpublicstatementsbygovernmentinstitutionsandrankingChineseAI
scientistsindicatesinfluentialpartofChina’sAIcommunitysharestheconcerns
misgivingsheldbywesternofLLMsseeksalternativepathwaysto
generalartificialintelligence.CenterforSecurityEmergingTechnology|9本报告来源于三个皮匠报告站(),由用户Id:349461下载,文档Id:611736,下载日期:2025-02-17WhatDoesAcademicRecordstatementsbyscientistsonemeasureofapproachtoGAI.Anotheris
theirrecordofscholarship.reviewsofChineseliteraturedetermined
ChinaispursuingGAIbymultiplemeans,includinggenerativelanguage
models,57brain-inspiredmodels,58byenhancingcognitionthroughbrain-computer
interfaces.59OurpresenttaskistotheliteratureforevidenceChinese
—beyondwhatpositivefeaturesbrain-basedmodelshave—drivento
seekalternativebyLLM’sshortcomings.end,rankeywordsearchesinChineseEnglishfor“AGI/GAI+
LLM”theircommonvariantsinCSET’sMergedCorpus60forpaperspublishedin
2021orlaterprimaryChineseauthorship.Some35documentswereA
separatequeryweb-basedsearchesrecovered43morepapers.6115ofthe78
paperswererejectedbythestudy’sleadanalystofftopic.Theremain63papers
werereviewedbythestudy’ssubjectmatterexpert,highlightedthefollowing24
examplesofChineseresearchaddressingLLMproblemsstandintheof
modelsachievingthegeneralityassociatedGAI.621.曹博西HAN韩先培SUNLe(孙乐“CanPromptProbe
PretrainedLanguageModels?UnderstandingtheRisksfromaCausal
View,”preprintarXiv:2203.12258v12.CHENG程兵,“ArtificialIntelligenceGenerativeContentincluding
OpensaNewBigParadigmSpaceofEconomicsSocialScience
Research”以ChatGPT为代表的大语言模型打开了经济学和其他社会科学研究范
式的巨大新空间ChinaJournalofEconometrics计量经济学报)3,no.3(July
2023).3.CHENG程岱宣HUANG黄少涵WEIFuru韦福如“AdaptingLargeLanguageModelstoDomainsviaReadingComprehension,”
preprintarXiv:2309.09530v44.DINGNing丁宁ZHENGHai-Tao郑海涛SUNMaosong孙茂松“Parameter-efficientFine-tuningofLarge-scalePre-trainedLanguageModels,”
NatureIntelligence,March2023.5.DONGQingxiu董青秀SUIZhifang穗志方LILei李磊,“ASurveyonIn-
contextarXivpreprintarXiv:2301.00234v4(2024).6.HUANGJiangyong黄江勇YONGSilong雍子隆,63HUANGSiyuan黄思远“AnEmbodiedGeneralistAgentin3DWorld,”Proceedingsofthe41st
ConferenceonMachineLearning,Austria,235.
2024.CenterforSecurityEmergingTechnology|107.JINFeihu金飞虎ZHANG张家俊,“UnifiedPromptMakesPre-
trainedLanguageModelsBetterFew-shotLearners,”IEEEInternational
ConferenceonAcoustics,SpeechSignalProcessing,June2023.8.LIHengli李珩立ZHUSongchun朱松纯ZHENG郑子隆,“DiPlomat:
ADialogueDatasetforSituatedPragmaticReasoning,”37thConferenceon
NeuralInformationProcessingSystems(NeurIPS2023).9.LIJiaqi(李佳琪ZHENG郑子隆ZHANG张牧涵,“LooGLE:Can
Long-ContextLanguageModelsUnderstandLongContext?”preprint
arXiv:2311.04939v1(2023).10.LIYuanchun李元春ZHANGYaqin张亚勤Yunxin刘云新,“Personal
LLMAgents:InsightsandSurveyabouttheCapability,EfficiencySecurity,”
preprintarXiv:2401.05459v211.MAYuxi马煜曦ZHUSongchun朱松纯,“BraininaonPieces
towardsArtificialGeneralIntelligenceinLargeModels,”arXiv
preprintarXiv:2307.03762v112.NIBolin尼博琳PENGHouwen彭厚文CHENZHANGSongyang
张宋扬),LINGHaibin凌海滨),“ExpandingLanguagePretrainedModels
forGeneralVideoRecognition,”preprintarXiv:2208.02816v1(2022).13.PENGYujia彭玉佳ZHUSongchun朱松纯,“TheTongTest:GeneralIntelligencethroughDynamicEmbodiedSocial
Interactions,”Engineering34,(2024).14.SHENGuobin申国斌ZENGYi曾毅,“Brain-inspiredNeuralCircuitEvolution
forSpikingNeuralNetworks,”PNAS39(2023).15.TANG唐晓娟ZHUSongchun朱松纯LIANGYitao梁一韬ZHANG张牧涵“LargeLanguageModelsAreIn-contextSemantic
ReasonersRatherthanSymbolicReasoners,”arXivpreprintarXiv:2305.14825v2(2023).16.WANGJunqi王俊淇PENGYujia彭玉佳ZHUYixin朱毅鑫Lifeng范
丽凤,“EvaluatingModelingSocialIntelligence:aComparativeStudyof
HumanAICapabilities,”arXivpreprintarXiv:2405.11841v1(2024).17.Fangzhi徐方植Jun(刘军,ErikCambria,“AreLargeLanguageModels
GoodReasoners?”arXivpreprintarXiv:2306.09841v218.Zhihao徐智昊DAIQionghai(戴琼海FANGLu方璐,“Large-scale
PhotonicChipletEmpowers160-TOPS/WGeneralIntelligence,”
Science,April2024.19.YUANLuyao袁路遥ZHUSongchun朱松纯),“CommunicativeLearning:a
UnifiedFormalism,”Engineering,March2023.CenterforSecurityEmergingTechnology|1120.ZHANG张驰ZHUYixin朱毅鑫ZHUSongchun朱松纯),“Human-level
shotConceptInductionthroughMinimaxEntropyScience
Advances,April2024.21.ZHANGTielin张铁林徐波,“ABrain-inspiredAlgorithmthat
MitigatesCatastrophicForgettingofArtificialandSpikingNeuralNetworksLowComputationalCost,”ScienceAdvances,August2023.22.ZHANGYue章岳Leyang崔乐阳SHIShuming史树明),“Siren’sSongin
theAIOcean:aSurveyonHallucinationinLargeModels,”arXiv
preprintarXiv:2309.01219v223.ZHAOZhuoya赵卓雅ZENGYi曾毅,“ABrain-inspiredTheoryofSpikingNeuralNetworkImprovesMulti-CooperationCompetition.”
Patterns,August2023.24.ZOU邹旭YANG杨植麟TANGJie唐杰,“ControllableGeneration
fromPre-trainedLanguageModelsviaInversePrompting,”arXivpreprint
arXiv:2103.10685v3(2021).ThestudiescollectivelyaddresstheofLLMdeficitsdescribedinthispaper’s
sections12,namely,thoseassociatedtheoryof(ToM)failures,
inductive,deductive,abductivereasoningdeficits,problemslearningnew
tasksthroughanalogytoprevioustasks,ofgrounding/embodiment,
unpredictabilityoferrorsandhallucinations,lackofintelligence,insufficient
understandingofreal-worldinput,inparticularinvideoform,difficultyindealingcontexts,challengesassociatedtheneedtotuneoutputs,costof
operation.Proposedsolutionstotheseproblemsfrommodules,emulatingbrain
structureprocesses,rigorousstandardsandtesting,real-worldembedding,to
thecomputingsubstrateoutrightwithimprovedtypes.SeveralprominentChinesescientistscitedinthisstudy’ssection2,madepublic
statementssupportingGAImodels,includingTangJie,ZhangYaqin,Bo,
Songchun,ZengYi,areonthebylinesofofthesepapers,adding
authenticitytotheirdeclarations.addition,vofChina’stopinstitutionscompaniesengagedinGAI
research,includingtheAcademyofArtificialIntelligence北京智源人工智能研
究院theInstituteforGeneralArtificialIntelligence北京通用人工智能研究院theChineseAcademyofSciences’InstituteofAutomation中国科学院自动化研究所PekingUniversity北京大学TsinghuaUniversity清华大学UniversityofChineseCenterforSecurityEmergingTechnology|12AcademyofSciences中国科学院大学)andAlibaba,ByteDance,Huawei,TencentAIrepresentedintheselectedcorpus,inmostcasesonmultiplepapers.64Therecordofmetadataadducedhere,conclusionsdrawninpriorCSETresearh65
supportthepresentstudy’scontentionmajorelementsinChina’sAIcommunity
questionLLMs’potentialtoachieveGAI—throughincreasesinscaleormodalities—
arecontemplatingorpursuingalternativeCenterforSecurityEmergingTechnology|13Assessment:DoAllPathstotheBuddha?WhenLLM-basedchatbotsfirstbecameavailable,earlyclaimsLLMsmightbe
sentient,i.e.,experiencefeelingssensations,orevenshowself-awareness,66were
prevalentmuchdiscussed.Sincethen,coolerheadsprevailed,67tfocus
shiftedfromphilosophicalspeculationsabouttheinteriorlivesofLLMstomore
concretemeasurementsofLLMabilitiesonkeyof“intelligent”behaviortheimportantquestionofwhetherLLMsmightbecapableofgeneral
artificialintelligenceitisfarfromwhetherconsciousnessthecapacityforemotionstoGAI,whatisisthataGAIsystemmustbetoreasonto
separatefromhallucinations.Asthingsstand,LLMsexplicitmechanisms
wouldenablethemtoperformthesecorerequirementsofintelligentbehavior.
Rather,thehopeofLLMenthusiastsisthat,somehow,reasoningabilitieswill
“emerge”LLMstrainedtobecomeeverbetterpredictingthenextwordina
conversation.Yet,thereistheoreticalforthisbelief.Tothecontrary,research
shownthatLLMs’vasttextmemorymaskeddeficienciesinreasoning.68Heuristicattemptstoimprovereasoning(e.g.,chain-of-thought),69likelythesfor
improvedperformanceinOpenAI’snew“o1”LLM,morerecentapproachessuch
“rephraserespond,”70“tree-of-thought71orthoughts”72yieldedimprovements,butdonotsolvetheunderlyingproblemofthebseofa
core“reasoningengine.”thetoken,multipleattemptstofixLLMs’hallucinationproblem73run
intodeadendsbecausetheytoaddressthecoreproblemisinherenttoLLMs’
togeneralizefromtrainingdatatonewcontexts.Indeed,currenteffortsto
improvereasoningabilitiesfixhallucinationsabitlikeplaying“whack-a-mole”
butmoleshidinginabillion-dimensionalamalletis
uncertaintointended.Theresultingsystemsbesufficientfor
situationshumansassessthequalityofLLMoutput,e.g.,cover
letters,designingtravelitinerariesorcreatingessaysontopicsthatareperennial
favoritesofschoolteachers.Yet,theseafarfromGAI.ThepublicdebatesinthewesternontheappropriatepathtoGAItendtobe
drownedoutbycompaniesfinancialinterestsinpromotingtheirlatestLLMsof“humanlikeintelligence”or“sparksofartificialgeneralintelligence,”74even
intheofevermoreshortcomingsofLLMs,detailedinsection1.The
ofcommercialinterestspromoteLLMssuretoGAICenterforSecurityEmergingTechnology|14negativelyaffectedtheofacademicresearchintheU.S.topursue
alternativeapproachestoGAI.75Thesituationisdifferentinina.WhiletherecompaniesinChinadeveloping
LLMsforcommercialpurposes,leadingChineseAIscientistsandgovernmentofficials,
detailedinthispaper,thatLLMsfundamentallimitationsmakeit
importanttoinvestigateotherapproachestoGAIorsupplementLLMperformance
“brainlike”Thelatterstrategy,ofpursuing“braininspired”AIledtobreakthroughsintheforexample,bydeeplearning76—
modeledonthesensoryprocessinghierarchy—reinforcementlearning77—
modelinghowthebrainstrategiesfromrewards—into“deepreinforcement
g,”78which,forinstance,formedthebasisofAlphaGo,79thefirstartificialneural
networktbeathumanchampionsinthegameofGo.Thisdifferenceinresearch
directionsgiveChinaadvantageintheracetoachieveGAI.behelpfultothecurrentsituationtohowChinatodominate
theglobalmarketforphotovoltaicpanels(or,morerecently,batterytechnology
electricvehicles),basedonChinesegovernmentdecisionstheofthemillenniumtobecomeaworldleaderinTheensuingpolicydecisionsinvestmentstobuildupthedomesticindustryincreasetheefficiencyofpanelsledtoinnovationeconomiesofscalenowhaveChinaproducingleast75%oftheworld’spanels.AdecisionbyChinatostrategicallyinvestin
non-LLM-basedapproachestoGAI80repeatthissuccess,albeitinafieldofeven
greaterthanphotovoltaics.CenterforSecurityEmergingTechnology|15ManagingaChinaFirst-MoverGeoffreyHinton,recentNobelwinnerrecipientofaTuringAwardforworkonmultilayerneuralnetworks—thefirstAINNarchitectureledto
superhumanperformanceonarangeofbenchmarktasksincomputervisionother
—acknowledges“arace,clearly,betweenChinatheU.S.,neitherisgoing
toslowdown.”81Thisraceto
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024秋一年级道德与法治上册 第10课 和家人在一起教学设计 未来版
- 极简商务计划总结
- 2024秋五年级语文上册 第八单元 第25课 古人谈读书教学设计 新人教版
- 半年工作总结与数据分析报告
- 18 旅游节(教学设计)人教版(2012)美术五年级下册
- 2025IDEAS毕业答辩模版
- 一年级语文上册 第7单元 课文3 11 项链教学设计 新人教版
- 个人代持股协议书7篇
- 《三位数乘两位数》(教学设计)- 2024-2025学年四年级上册数学人教版
- 2024秋四年级英语上册 Unit 3 My friends Part A 第1课时教学设计 人教PEP
- 专题04-完形填空2023年高考英语三模试题分项汇编(新高考八省专用)-(原卷版)
- 物理治疗学(人卫三版)
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传海报
- 湖北省黄冈八模2025届高三第一次模拟考试数学试卷含解析
- 道路工程交通安全设施施工方案及保障措施
- 花粉购销合同范例
- 柑橘品种改良研究
- 2024年秋儿童发展问题的咨询与辅导终考期末大作业案例分析1-5答案
- 劳务派遣信息管理系统
- 无人值守道闸运营方案
- 极地安全课件教学课件
评论
0/150
提交评论