2025+中国学界对大语言建模的采购性思考人用工智能+AGI+的多渠道调查研究报告(英)-29正式版_第1页
2025+中国学界对大语言建模的采购性思考人用工智能+AGI+的多渠道调查研究报告(英)-29正式版_第2页
2025+中国学界对大语言建模的采购性思考人用工智能+AGI+的多渠道调查研究报告(英)-29正式版_第3页
2025+中国学界对大语言建模的采购性思考人用工智能+AGI+的多渠道调查研究报告(英)-29正式版_第4页
2025+中国学界对大语言建模的采购性思考人用工智能+AGI+的多渠道调查研究报告(英)-29正式版_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ExecutiveSummarylanguagemodelshavegarneredinteresttotheirremarkable

to“generate”human-likeresponsestonaturallanguagequeries—athreshold

onetimewasconsidered“proof”ofsentience—performothertime-saving

tasks.Indeed,LLMsregardedbymanyorthe,pathwaytogeneralartificial

intelligence(GAI)—hypothesizedstatewherecomputers(orevenexceed)

skillsmostortasks.ThelureofAI’sholygrailthroughLLMsdrawninvestmentinthebillions

ofbythosefocusedonthistheUnitedStatesEuropeespecially,big

privatesectorcompaniesledthewayandtheirfocusonLLMsovershadowed

researchonotherapproachestoGAI,despiteLLM’sknowndownsidessuchcost,

powerconsumption,or“hallucinatory”output,deficitsinreasoning

abilities.thesecompanies’betsonLLMsfailtodeliveronexpectationsofprogress

GAI,westernAIdevelopersbepositionedtofallbackon

approaches.contrast,Chinafollowsastate-driven,diverseAIdevelopmentLiketheUnited

States,investsinLLMsbutsimultaneouslypursuestoGAI,

thosemoreexplicitlybrain-inspired.Thisreportdrawsonpublicstatements

bytopscientists,theirassociatedresearch,andongovernment

announcementstodocumentChina’smultifacetedTheChinesegovernmentsponsorsresearchtoinfuse“values”intoAIintendedto

guideautonomousprovideAIsafety,ensureChina’sAI

reflectstheneedsofthepeoplethestate.Thisreportconcludesbyrecommending

U.S.governmentsupportforalternativegeneralAIprogramsforcloserscrutinyof

AIresearch.CenterforSecurityEmergingTechnology|1Introduction:GenerativeAIandAIAchievinggeneralartificialintelligenceorGAI—definedAIthatreplicatesor

exceedsmostcognitiveacrossaoftasks,suchimage/video

understanding,continuallearning,planning,reasoning,skilltransfer,andcreativity1—is

akeystrategicgoalofintenseresearcheffortsbothinChinatheUnitedStates.2

Thereisvigorousdebateintheinternationalscientificcommunityregardingwhichth

leadtoGAImostquicklywhichpathsbestarts.theUnitedStates,

LLMsdominatedthediscussion,yetquestionsremainabouttheirabilityto

achieveGAI.SincechoosingthepathcanpositiontheUnitedStatesa

strategicdisadvantage,thisraisestheurgencyofalternativeapproaches

othercountriesbepursuing.theUnitedStates,expertsbelievethesteptoGAIwilloccur

therolloutofnewversionsofLLMssuchasOpenAI’so1,Google’sGemini,

Anthropic’sClaude,Meta’sLlama.3Othersargue,pointingtopersistentproblems

suchLLMhallucinations,mountofcompute,feedback,ormultimodaldata

sourcesLLMstoachieveGAI.4StillotherAIscientistsseerolesforLLMsin

GAIplatformsbutnottheonly,orevenmain,component.5PonderingthequestionofhowGAIcanbeachievedisimpobecauseittoucheson

optionsavailabletodeveloperspursuingAI’straditionalholygrail—human-level

intelligence.thepath—orapath—toGAIacontinuationofLLMdevelopment,

possiblyaugmentedbymodules?OrLLMsadeadend,necessitating

other,differentapproachesbasedonacloseremulationof

cognitionandbrainfunction?GiventhesuccessofLLMs,thelevelsofinvestment,6endorsementsbyregarded

AIscientists,optimismcreatedbyexamples,thedifficultyofreimagining

newapproachesinthefaceofmodelsinwhichcompaniesgreatcommitment,itis

easytooverlooktheofrelyingona“monoculture”basedonasingleresearch

m.7therearelimitationstoLLMsdeliver,withoutasufficiently

diversifiedesearchportfolio,itisunclearhowwellwesterncompaniesgovernmentsbetopursueothersolutionscanovercomeLLMsproblems

pathwaystoGAI.AdiversifiedresearchportfolioispreciselyChina’sapproachtoitsstate-sponsored

goalofachieving“generalartificialintelligence”通用人工智能.8Thisreportshow

that—inadditiontoChina’sknownprodigiousefforttofieldChatGPTLLMs,9—significantresourcesaredirectedinChinaalternativepathwaystoGAIbyCenterforSecurityEmergingTechnology|2scientistshavewell-foundedconcernsaboutthepotentialof“bigsmall

task”大数据,小任务)approachestoreachhumancapabilities.10Accordingly,thispaperaddressesquestions:criticismsdoChinesescientists

ofLLMstogeneralAI?howisChinamanagingLLMs’alleged

shortcomings?Thepaperbegins(section1)critiquesbyprominentnon-ChinaAIscientistsof

languagemodelstheirtosupportGAI.Thesectionprovidescontext

forviewsofChinesescientiststowardLLMs(section2)describedinsources.

Section3thencitesresearchsupportsChina’spublic-facingclaimsaboutthenon-

viabilityofLLMsapathtoGAI.section4,assesstheseclaimsasafor

recommendationsinsection5onChina’salternativeprojectsmustbetaken

seriously.CenterforSecurityEmergingTechnology|3LargeLanguageModelsTheirCriticsThetermlanguagemodel”capturestheylargenetworkstypically

billionstotrillionsofparameters,theytrainedonnaturallanguage,

terabytesoftextingestedfromtheinternetothersources.LLMs,neural

networks(NN)generally,typologicallydistinctfrom“goodoldfashioned”(GOFAI)

symbolicAIthatdependsonrule-basedcoding.addition,today’slargemodelscan

todifferentdegrees,multimodalinputsoutputs,includingimages,video,

audio.11LLMsdebutedin2017,whenGoogleengineersproposedaNNarchitecture—a

transformer—optimizedtopatternsinsequencesoftextbytoattention”tothecooccurrencerelationshipsbetween“tokens”orof

words)inthetrainingcorpus.12Unlikehumanknowledge,knowledgecapturedinLLMs

isnotobtainedthroughinterionsthenaturalenvironmentbutdependson

probabilitiesderivedfromthepositionalrelationshipsbetweenthetokensin

sequences.MassiveexposuretocorporatrainingallowstheLLMtoidentify

regularitiesintheaggregate,beusedtogenerateresponsestopromptsafterthetraining.Hence,theOpenAIproduct“GPT”(generativepre-

trainedtransformer).TheofLLMsto“blend”differentsourcesofinformation(whichplaysto

strengthsofneuralnetworksinpatternmatchinganduncovering

similaritiesincomplexspaces)hasgiventoapplicationsindiversetext

summarization,translation,codetheoremproving.Yet,itbeenhotlydebatedwhetherthisabilitytoexploitregularitiesis

sufficienttoachieveGAI.Initialenthusiasticreportsthe“sentience”ofLLMs

increasinglysupplementedbyreportsshowingseriousdeficitsinLLMs’abilityto

understandlanguagetoreasoninahuman-like.13SomepersistentinLLMs,inbasicmath,14ppearcorrectablebys,15

i.e.,externalprogramsspecializedforofLLMeaknesses.such—ofanetworkofsystemsspecializedindifferentaspectsofcognition—

wouldbemorelikethewhichhasdedicatedmodules,e.g.,forepisodicmemory,

reasoning,etc.,ratherthanasingleprocessinLLMs.16SomescientistshopeincreasesincomplexityhelpovercomeLLMs’

defects.ForGeoffreyHinton,creditingintuitionofIlyaSutskever(OpenAI’s

formerchiefscientist,studiedHinton),believessolvesomeof

theseproblems.thisview,LLMs“reasoning”byvirtueoftheirability“toCenterforSecurityEmergingTechnology|4predictthenextsymbolpredictionisaprettytheoryofhowtheis

g.”17Indeed,increasesincomplexity(fromGPT-2throughGPT-4)ledto

increasedpeonvariousbenchmarktasks,such“theoryof18

aboutmentalstates),deficitswerenotedforGPT-3.5.19Othersuchdeficitsarehardertoaddressandpersistdespiteincreasesinmodel

complexity.Specifically,“hallucinations,”i.e.,LLMsmakingincorrectclaims(aproblem

inherenttoneuralnetworksthataredesignedtointerpolateunlikethebrain,do

notseparatethestorageoffrominterpolations)errorsinreasoningbeendifficulttoovercome20recentstudiesthatthelikelihoodof

incorrect/hallucinatorysweincreasesgreatermodelcomplexity.21addition,thestrategyofincreasingmodelcomplexityinthehopeofhievingnovel,

qualitativelydifferent“emergent”behaviorsappearonceacomputational

thresholdbeencrossedlikewisebeencalledintoquestionbyresearch

thatpreviouslynoted“emergent”inmodelswereartefactsof

themetricsusednotindicativeofanyqualitativeinmodelperformance.22

Correspondingly,claimsof“emergence”inLLMsdeclinedintherecentliterature,

evenmodelcomplexitiesincreased.23Indeed,thereisthejustifiedconcerntheighperformanceofLLMson

standardizedtestscouldbeascribedmoretothewell-knownpatternmatching

prowessofneuralnetworksthanthediscoveryofnewstrategies.24StillotherofLLMscenteronfundamentalcognitiveandphilosophicalissues

suchtheabilitytogeneralize,formdeepabstractions,create,self-direct,modeltime

space,showcommonsense,reflectontheirownoutput,25manageambiguous

expressions,unlearnbasedonnewinformation,evaluateproconarguments

decisions),graspnuance.26thesedeficitsdiscussedinthewesternresearchliterature,others

suchLLMs’inabilitytoeasilyknowledgebeyondthecontextwindowwithout

thebasemodel,orthecomputationalenergydemandsofLLM

mostcurrentinvestmentofcommercialplayersintheAIspace(e.g.,OpenAI,

Anthropic)iscontinuingdownthissameroad.Theproblemisnotonly“weinvestinginidealfuturemaynotmaterialize”27butratherLLMs,inGoogle

AIresearcherFranoisChollet’swords,“suckedtheoxygenoutoftheroom.Everyone

isdoingLLMs.”28CenterforSecurityEmergingTechnology|5ChineseViewsofasaPathtoGeneralAI(orNot)AreviewofstatementsbyscientiststopAIresearchinstitutes

revealsahighdegreeofskepticismaboutLLMs’tolead,bythemselves,toGAI.

Theseresemblethoseofinternationalexperts,becausebothgroupsthe

problemsbecauseChina’sAIexpertsinteractwiththeirglobalpeersa

matterofcourse.29HerefollowseveralChinesescientists’viewsonLLMsapathtogeneralTang唐杰)isprofessorofcomputerscienceTsinghuaUniversity,thefounderof

智谱),30aleadingfigureintheAcademyofIntelligence(BAAI),31

thedesierofseveralindigenousLLMs.32Despitesuccessstatistical

models,argueshuman-levelAIrequiresthemodelstobe“embodiedinthe

d.”33Althoughbelievesthescalinglaw(规模法则34“stillalongwaytogo,”

onedoesnotguaranteeGAIwillbeachieved.35Amofruitfulpathwouldtake

cuesfrombiology.hiswords:“GAIormachineintelligencebasedonlargemodelsdoesnotnecessarilytobe

thethemechanismofhumanbraincognition,butanalyzingtheofthebrainmaybettertherealizationofGAI.”36ZhangYaqin张亚勤,AKAYa-QinZhang)co-foundedMicrosoftResearchAsiisthe

formerpresidentoffoundingdeanofTsinghua’sInstituteforAIIndustry

Research智能产业研究院)aadvisor.ZhangcitesthreeproblemsLLMs,

namely,theirlowcomputationalefficiency,inabilityto“trulyunderstandthephysical

world,”socalled“boundaryissues”边界问题i.e.,tokenization.37Zhangbelieves

Goertzel)“weneedtoexplorehowtocombinegenerativeprobabilistic

modelsexisting‘firstprinciples’[ofthephysicalworld]orrealmodelsand

knowledges.”38HuangTiejun黄铁军)isfounderformerdirectorofandvicedeanofPeking

University’sInstituteforIntelligence(人工智能研究院Huangnames

threetoGAI:“informationmodels”basedonbigdatabigcompute,

“embodiedmodels”trainedthroughreinforcementbrainemulation—in

astake.39HuangagreesLLMscalinglawswillcontinueto

operatebut“itisnotonlyecessarytocollectstaticdata,butalsotoobtainprocessmultiplesensoryinformationinrealtime.”40Inview,GAIdependson

integratingstatisticalmodelsbrain-inspiredAIandembodiment,CenterforSecurityEmergingTechnology|6LLMsrepresent“staticemergencebasedonbigdat”是基于大数据的静态涌现.

Brain-inspiredintelligence,bycontrast,isbasedoncomplexdynamics.Embodied

intelligencediffersinthatitgeneratesnewabilitiesbyinteractingthe

environment41Bo徐波,deoftheSchoolofArtificialIntelligenceUniversityofChinese

AcademyofSciences(UCAS)中国科学院大学人工智能学院)directorofthe

ChineseAcademyofSciences(CAS)InstituteofAutomation(CASIA,中国科学院自动化

研究所,42Muming蒲慕明,AKAMumingPoo),directorofCAS’sCenterfor

ExcelleinBrainScienceIntelligenceTechnology脑科学与智能技术卓

越创新中心43believeembodimentenvironmentalinteractionfacilitateLLMs’

growthtodGAI.AlthoughtheartificialneuralnetworksonwhichLLMsdepend

wereinspiredbybiology,theybyadding“moreneurons,layersconnections”

donotbegintoemulatethecomplexityofneurontypes,selective

connectivity,modularstructure.particular,“Computationallycostlybackpropagationalgorithms…couldbeimprovedoreven

replacedbyplausiblealgorithms.”Thesecandidatesinclude

spiketimesynapticplasticity,“neuromodulatordependentmetaplasticity”“short-

termvs.long-termmemorystoragerulessetthestabilityofsynaptics.”44ZhuSongchun朱松纯,AKASong-deanofPKU’sInstituteofIntelligencedirectoroftheInstituteforGeneralArtificialIntelligence北京

通用人工智能研究院)foundedonthepremisebigdata-basedLLMsa

dead-endintermsoftheirtoemulatehuman-levelcognition.45pullspunches:“Achievinggeneralartificialintelligenceistheoriginalintentionandultimategoalof

artificialintelligenceresearch,butcontinuingtoexpandtheparameterbasedon

existinglargemodelscannotachievegeneralartificialintelligence.”comparesChina’sLLM’sachievementstoMt.Everest”whenthereal

goalistoreachthemoon.Inview,LLMs“inherentlyuninterpretable,ofdataleakage,donotacognitivearchitecture,lackcausalandmathematical

reasoningcapabilities,otherlimitations,sotheyleadto‘generalartificial

intelligence’.”46ZengYi曾毅,directorofCASIA’sBrain-inspiredCognitiveIntelligence类脑认知

智能实验室foundingdirectorofitsInternationalResearchCenterforAIEthicsCenterforSecurityEmergingTechnology|7Governance,47isbuildingaGAIplatformbasedontime-dependentspikingneural

networks.hiswords:“Ourbraincognitiveintelligenceteamfirmlybelievesonlybythe

structureofthebrainitsintelligentwellthelawsofnaturalevolution,achieveintelligenceistruly

meaningfulbeneficialtohumans.”48ofLLMsbyotherChineseAIscientistslegion.•ShenXiangyang沈向洋,HarryShumAKAHeung-YeungShum),former

MicrosoftexecutiveVPdirectoroftheAcademicCommitteeofPKU’s

InstituteofIntelligence,lamentsAIresearch“clear

understandingoftheofintelligence.”Shensupportsaviewattributes

toNewYorkUniversityprofessoremeritusLLMcriticMarcusthat“no

matterhowChatGPTdevelops,thecurrenttechnicalroutenotbeto

usrealintelligence.”49•Qinghua(郑庆华presidentofTongjiUniversityaChineseAcademy

ofEngineeringacademician,statedthatLLMshaveflaws:theyconsume

toomuchdatacomputingresources,susceptibletocatastrophic

forgetting,logicalreasoningcapabilities,donotknowwhenthey

ortheyareg.50•LiWu李武directoroftheStateKeyLaboratoryofCognitiveNeuroscienceBeijingNormalUniversity,statedhisbelief“currentneural

networksrelativelyspecializeddonotconformtothethehuman

works.youdesperatelyhypethemodelitselfonlyfocusonthe

expansionofparametersfrombillionsortensofbillionstohundredsofbillions,

younotbetoachievetrueintelligence.”51RecognitionoftheneedtosupplementLLMresearchwithalternativetoGAIisevidencedinstatementsbynationalandmunicipalgovernments.On30,2023,citygovernment—whosejurisdictionmuchof

GAI-orientedLLMresearchisplace—issuedastatementcallingfor

developmentofmodelsothergeneralartificialintelligencetechnology

systems”系统构建大模型等通用人工智能技术体系.52Sectionthreefiveitems(7-

11),thefirstfourofwhichpertaintoLLMs(algorithms,trainingdata,evaluation,a

softwarehardwaresystem).Item11reads“exploringnew新路径)for

generalartificialintelligence”andcallsfor:CenterforSecurityEmergingTechnology|8Developingabasictheoreticalsystem基础理论体系)forGAI,autonomous

collaborationdecision-making,embodiedintelligence,brain-inspired类脑)

intelligence,supportedbyaunifiedtheoreticalframework,ratingandtesting

programminglanguages.Embodiedsystems(robots)[trainopenenvironments,generalizedscenarios,continuoustasks.Themandatesthefollowing:“Supporttheexplorationofbrainintelligence,studytheconnectionpatterns,

codingmechanisms,informationprocessingandothercoretechnologiesofneurons,inspirenewartificialneuralnetworkmodelingandtrainingmethods.”AlternativestoLLMswerecitedthenationallevelin2024,whenvice

presidentWu吴朝晖,formerlyviceministerofChina’ssciencepresidentofUniversity),53statedAIismovingtoward“synergybetween

andsmallmodels”大小模型协同,addingChinamust“explorethe

developmentofGAIinmultipleways”多路径地探索通用人工智能发展Thelatter

“embodiedintelligence,distributedgroupintelligence,humanhybrid

intelligence,enhancedintelligence,autonomousdecisionmaking.”54ThefollowingmonthHaidianDistrictgovernment,sdictionover1,300

AIcompanies,morethan90ofdevelopingbigmodels,55issuedathree-year

tofacilitateresearchinembodied具身)AI.Thedefines“embodiment”“theofintelligentsystemormachinetointeracttheenvironmentinreal

timethroughperceptioninteraction”andismeanttoserveaplatformfor

development.Itsdetailsplansforhumanoidrobotsfacilitatedby

replicatingbrainfunctionality.56OuranalysisofpublicstatementsbygovernmentinstitutionsandrankingChineseAI

scientistsindicatesinfluentialpartofChina’sAIcommunitysharestheconcerns

misgivingsheldbywesternofLLMsseeksalternativepathwaysto

generalartificialintelligence.CenterforSecurityEmergingTechnology|9本报告来源于三个皮匠报告站(),由用户Id:349461下载,文档Id:611736,下载日期:2025-02-17WhatDoesAcademicRecordstatementsbyscientistsonemeasureofapproachtoGAI.Anotheris

theirrecordofscholarship.reviewsofChineseliteraturedetermined

ChinaispursuingGAIbymultiplemeans,includinggenerativelanguage

models,57brain-inspiredmodels,58byenhancingcognitionthroughbrain-computer

interfaces.59OurpresenttaskistotheliteratureforevidenceChinese

—beyondwhatpositivefeaturesbrain-basedmodelshave—drivento

seekalternativebyLLM’sshortcomings.end,rankeywordsearchesinChineseEnglishfor“AGI/GAI+

LLM”theircommonvariantsinCSET’sMergedCorpus60forpaperspublishedin

2021orlaterprimaryChineseauthorship.Some35documentswereA

separatequeryweb-basedsearchesrecovered43morepapers.6115ofthe78

paperswererejectedbythestudy’sleadanalystofftopic.Theremain63papers

werereviewedbythestudy’ssubjectmatterexpert,highlightedthefollowing24

examplesofChineseresearchaddressingLLMproblemsstandintheof

modelsachievingthegeneralityassociatedGAI.621.曹博西HAN韩先培SUNLe(孙乐“CanPromptProbe

PretrainedLanguageModels?UnderstandingtheRisksfromaCausal

View,”preprintarXiv:2203.12258v12.CHENG程兵,“ArtificialIntelligenceGenerativeContentincluding

OpensaNewBigParadigmSpaceofEconomicsSocialScience

Research”以ChatGPT为代表的大语言模型打开了经济学和其他社会科学研究范

式的巨大新空间ChinaJournalofEconometrics计量经济学报)3,no.3(July

2023).3.CHENG程岱宣HUANG黄少涵WEIFuru韦福如“AdaptingLargeLanguageModelstoDomainsviaReadingComprehension,”

preprintarXiv:2309.09530v44.DINGNing丁宁ZHENGHai-Tao郑海涛SUNMaosong孙茂松“Parameter-efficientFine-tuningofLarge-scalePre-trainedLanguageModels,”

NatureIntelligence,March2023.5.DONGQingxiu董青秀SUIZhifang穗志方LILei李磊,“ASurveyonIn-

contextarXivpreprintarXiv:2301.00234v4(2024).6.HUANGJiangyong黄江勇YONGSilong雍子隆,63HUANGSiyuan黄思远“AnEmbodiedGeneralistAgentin3DWorld,”Proceedingsofthe41st

ConferenceonMachineLearning,Austria,235.

2024.CenterforSecurityEmergingTechnology|107.JINFeihu金飞虎ZHANG张家俊,“UnifiedPromptMakesPre-

trainedLanguageModelsBetterFew-shotLearners,”IEEEInternational

ConferenceonAcoustics,SpeechSignalProcessing,June2023.8.LIHengli李珩立ZHUSongchun朱松纯ZHENG郑子隆,“DiPlomat:

ADialogueDatasetforSituatedPragmaticReasoning,”37thConferenceon

NeuralInformationProcessingSystems(NeurIPS2023).9.LIJiaqi(李佳琪ZHENG郑子隆ZHANG张牧涵,“LooGLE:Can

Long-ContextLanguageModelsUnderstandLongContext?”preprint

arXiv:2311.04939v1(2023).10.LIYuanchun李元春ZHANGYaqin张亚勤Yunxin刘云新,“Personal

LLMAgents:InsightsandSurveyabouttheCapability,EfficiencySecurity,”

preprintarXiv:2401.05459v211.MAYuxi马煜曦ZHUSongchun朱松纯,“BraininaonPieces

towardsArtificialGeneralIntelligenceinLargeModels,”arXiv

preprintarXiv:2307.03762v112.NIBolin尼博琳PENGHouwen彭厚文CHENZHANGSongyang

张宋扬),LINGHaibin凌海滨),“ExpandingLanguagePretrainedModels

forGeneralVideoRecognition,”preprintarXiv:2208.02816v1(2022).13.PENGYujia彭玉佳ZHUSongchun朱松纯,“TheTongTest:GeneralIntelligencethroughDynamicEmbodiedSocial

Interactions,”Engineering34,(2024).14.SHENGuobin申国斌ZENGYi曾毅,“Brain-inspiredNeuralCircuitEvolution

forSpikingNeuralNetworks,”PNAS39(2023).15.TANG唐晓娟ZHUSongchun朱松纯LIANGYitao梁一韬ZHANG张牧涵“LargeLanguageModelsAreIn-contextSemantic

ReasonersRatherthanSymbolicReasoners,”arXivpreprintarXiv:2305.14825v2(2023).16.WANGJunqi王俊淇PENGYujia彭玉佳ZHUYixin朱毅鑫Lifeng范

丽凤,“EvaluatingModelingSocialIntelligence:aComparativeStudyof

HumanAICapabilities,”arXivpreprintarXiv:2405.11841v1(2024).17.Fangzhi徐方植Jun(刘军,ErikCambria,“AreLargeLanguageModels

GoodReasoners?”arXivpreprintarXiv:2306.09841v218.Zhihao徐智昊DAIQionghai(戴琼海FANGLu方璐,“Large-scale

PhotonicChipletEmpowers160-TOPS/WGeneralIntelligence,”

Science,April2024.19.YUANLuyao袁路遥ZHUSongchun朱松纯),“CommunicativeLearning:a

UnifiedFormalism,”Engineering,March2023.CenterforSecurityEmergingTechnology|1120.ZHANG张驰ZHUYixin朱毅鑫ZHUSongchun朱松纯),“Human-level

shotConceptInductionthroughMinimaxEntropyScience

Advances,April2024.21.ZHANGTielin张铁林徐波,“ABrain-inspiredAlgorithmthat

MitigatesCatastrophicForgettingofArtificialandSpikingNeuralNetworksLowComputationalCost,”ScienceAdvances,August2023.22.ZHANGYue章岳Leyang崔乐阳SHIShuming史树明),“Siren’sSongin

theAIOcean:aSurveyonHallucinationinLargeModels,”arXiv

preprintarXiv:2309.01219v223.ZHAOZhuoya赵卓雅ZENGYi曾毅,“ABrain-inspiredTheoryofSpikingNeuralNetworkImprovesMulti-CooperationCompetition.”

Patterns,August2023.24.ZOU邹旭YANG杨植麟TANGJie唐杰,“ControllableGeneration

fromPre-trainedLanguageModelsviaInversePrompting,”arXivpreprint

arXiv:2103.10685v3(2021).ThestudiescollectivelyaddresstheofLLMdeficitsdescribedinthispaper’s

sections12,namely,thoseassociatedtheoryof(ToM)failures,

inductive,deductive,abductivereasoningdeficits,problemslearningnew

tasksthroughanalogytoprevioustasks,ofgrounding/embodiment,

unpredictabilityoferrorsandhallucinations,lackofintelligence,insufficient

understandingofreal-worldinput,inparticularinvideoform,difficultyindealingcontexts,challengesassociatedtheneedtotuneoutputs,costof

operation.Proposedsolutionstotheseproblemsfrommodules,emulatingbrain

structureprocesses,rigorousstandardsandtesting,real-worldembedding,to

thecomputingsubstrateoutrightwithimprovedtypes.SeveralprominentChinesescientistscitedinthisstudy’ssection2,madepublic

statementssupportingGAImodels,includingTangJie,ZhangYaqin,Bo,

Songchun,ZengYi,areonthebylinesofofthesepapers,adding

authenticitytotheirdeclarations.addition,vofChina’stopinstitutionscompaniesengagedinGAI

research,includingtheAcademyofArtificialIntelligence北京智源人工智能研

究院theInstituteforGeneralArtificialIntelligence北京通用人工智能研究院theChineseAcademyofSciences’InstituteofAutomation中国科学院自动化研究所PekingUniversity北京大学TsinghuaUniversity清华大学UniversityofChineseCenterforSecurityEmergingTechnology|12AcademyofSciences中国科学院大学)andAlibaba,ByteDance,Huawei,TencentAIrepresentedintheselectedcorpus,inmostcasesonmultiplepapers.64Therecordofmetadataadducedhere,conclusionsdrawninpriorCSETresearh65

supportthepresentstudy’scontentionmajorelementsinChina’sAIcommunity

questionLLMs’potentialtoachieveGAI—throughincreasesinscaleormodalities—

arecontemplatingorpursuingalternativeCenterforSecurityEmergingTechnology|13Assessment:DoAllPathstotheBuddha?WhenLLM-basedchatbotsfirstbecameavailable,earlyclaimsLLMsmightbe

sentient,i.e.,experiencefeelingssensations,orevenshowself-awareness,66were

prevalentmuchdiscussed.Sincethen,coolerheadsprevailed,67tfocus

shiftedfromphilosophicalspeculationsabouttheinteriorlivesofLLMstomore

concretemeasurementsofLLMabilitiesonkeyof“intelligent”behaviortheimportantquestionofwhetherLLMsmightbecapableofgeneral

artificialintelligenceitisfarfromwhetherconsciousnessthecapacityforemotionstoGAI,whatisisthataGAIsystemmustbetoreasonto

separatefromhallucinations.Asthingsstand,LLMsexplicitmechanisms

wouldenablethemtoperformthesecorerequirementsofintelligentbehavior.

Rather,thehopeofLLMenthusiastsisthat,somehow,reasoningabilitieswill

“emerge”LLMstrainedtobecomeeverbetterpredictingthenextwordina

conversation.Yet,thereistheoreticalforthisbelief.Tothecontrary,research

shownthatLLMs’vasttextmemorymaskeddeficienciesinreasoning.68Heuristicattemptstoimprovereasoning(e.g.,chain-of-thought),69likelythesfor

improvedperformanceinOpenAI’snew“o1”LLM,morerecentapproachessuch

“rephraserespond,”70“tree-of-thought71orthoughts”72yieldedimprovements,butdonotsolvetheunderlyingproblemofthebseofa

core“reasoningengine.”thetoken,multipleattemptstofixLLMs’hallucinationproblem73run

intodeadendsbecausetheytoaddressthecoreproblemisinherenttoLLMs’

togeneralizefromtrainingdatatonewcontexts.Indeed,currenteffortsto

improvereasoningabilitiesfixhallucinationsabitlikeplaying“whack-a-mole”

butmoleshidinginabillion-dimensionalamalletis

uncertaintointended.Theresultingsystemsbesufficientfor

situationshumansassessthequalityofLLMoutput,e.g.,cover

letters,designingtravelitinerariesorcreatingessaysontopicsthatareperennial

favoritesofschoolteachers.Yet,theseafarfromGAI.ThepublicdebatesinthewesternontheappropriatepathtoGAItendtobe

drownedoutbycompaniesfinancialinterestsinpromotingtheirlatestLLMsof“humanlikeintelligence”or“sparksofartificialgeneralintelligence,”74even

intheofevermoreshortcomingsofLLMs,detailedinsection1.The

ofcommercialinterestspromoteLLMssuretoGAICenterforSecurityEmergingTechnology|14negativelyaffectedtheofacademicresearchintheU.S.topursue

alternativeapproachestoGAI.75Thesituationisdifferentinina.WhiletherecompaniesinChinadeveloping

LLMsforcommercialpurposes,leadingChineseAIscientistsandgovernmentofficials,

detailedinthispaper,thatLLMsfundamentallimitationsmakeit

importanttoinvestigateotherapproachestoGAIorsupplementLLMperformance

“brainlike”Thelatterstrategy,ofpursuing“braininspired”AIledtobreakthroughsintheforexample,bydeeplearning76—

modeledonthesensoryprocessinghierarchy—reinforcementlearning77—

modelinghowthebrainstrategiesfromrewards—into“deepreinforcement

g,”78which,forinstance,formedthebasisofAlphaGo,79thefirstartificialneural

networktbeathumanchampionsinthegameofGo.Thisdifferenceinresearch

directionsgiveChinaadvantageintheracetoachieveGAI.behelpfultothecurrentsituationtohowChinatodominate

theglobalmarketforphotovoltaicpanels(or,morerecently,batterytechnology

electricvehicles),basedonChinesegovernmentdecisionstheofthemillenniumtobecomeaworldleaderinTheensuingpolicydecisionsinvestmentstobuildupthedomesticindustryincreasetheefficiencyofpanelsledtoinnovationeconomiesofscalenowhaveChinaproducingleast75%oftheworld’spanels.AdecisionbyChinatostrategicallyinvestin

non-LLM-basedapproachestoGAI80repeatthissuccess,albeitinafieldofeven

greaterthanphotovoltaics.CenterforSecurityEmergingTechnology|15ManagingaChinaFirst-MoverGeoffreyHinton,recentNobelwinnerrecipientofaTuringAwardforworkonmultilayerneuralnetworks—thefirstAINNarchitectureledto

superhumanperformanceonarangeofbenchmarktasksincomputervisionother

—acknowledges“arace,clearly,betweenChinatheU.S.,neitherisgoing

toslowdown.”81Thisraceto

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论