2024塑造生成式人工智能的未来:开源在GenAI技术演进与实施中的作用研究报告 Shaping the Future of Generative Al The Impact of Open Source Innovation_第1页
2024塑造生成式人工智能的未来:开源在GenAI技术演进与实施中的作用研究报告 Shaping the Future of Generative Al The Impact of Open Source Innovation_第2页
2024塑造生成式人工智能的未来:开源在GenAI技术演进与实施中的作用研究报告 Shaping the Future of Generative Al The Impact of Open Source Innovation_第3页
2024塑造生成式人工智能的未来:开源在GenAI技术演进与实施中的作用研究报告 Shaping the Future of Generative Al The Impact of Open Source Innovation_第4页
2024塑造生成式人工智能的未来:开源在GenAI技术演进与实施中的作用研究报告 Shaping the Future of Generative Al The Impact of Open Source Innovation_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ShapingtheFutureofGenerativeAI

TheImpactofOpenSourceInnovation

AdriennLawson,TheLinuxFoundation

StephenHendrick,TheLinuxFoundationNancyRausch,TheLinuxFoundation

JeffreySica,TheLinuxFoundation

MarcoGerosa,Ph.D.,NorthernArizonaUniversity

Forewordby

HilaryCarter,TheLinuxFoundation

November2024

ShapingtheFutureofGenerativeAI

84%oforganizationshavemoderate,high,orveryhighadoptionofGenAI.

41%ofGenAI

infrastructurecodeisopensource.

For92%ofsurveyedcompanies,GenAIisimportant,and51%

consideritextremelyimportant.

For71%oforganizations,theopensourcenatureofa model/toolhasapositiveinfluenceonitsadoption,duetotransparencyandcostefficiency.

82%ofrespondentsagreethatopensourceAIiscriticalforapositive

AIfuture.

78%oforganizations

believeitisimportanttouseopensourcetools

hostedbyaneutralparty,primarilyduetostandards®ulationscomplianceandtrust.

Amongthosewhoserveorself-hostGenAImodels,50%useKubernetesfortheirinference

workloads.

30%oforganizationsuseproprietarydatafortheirproprietarymodels,and22%useitforopen

sourcemodels.

Mostorganizationsadopt multiplestrategiesfor hostingGenAIinference, includingself-hosting inthecloud(49%)andmanagedAPIservices(47%).

65%ofsurveyed

ForthefutureofGenAI,83%ofrespondentsagreethatAIneedstobeincreasinglyopen.

organizationsbuildandtrainGenAImodelsoncloud-based

infrastructure.

GenAIhasimproved

productivityfor79%ofrespondentsandhasallowedthemtolearnnewskillsandimprovecreativityandinnovation.

Copyright©2024

TheLinuxFoundation

|November2024.Thisreportislicensedunderthe

CreativeCommonsAttribution-NoDerivatives4.0InternationalPublicLicense

Contents

Foreword

0

4

Executivesummary

0

5

Introduction

0

7

GenAIadoptionanduseinorganizations

0

8

GenAIadoption

0

8

GenAIactivitybreakdown:Consumptiondominatesas

custommodelbuildinggainstraction

0

9

PrimaryGenAIusecases

12

HowopensourceisexpandingtheroleofGenAI

16

HighadoptersofGenAIaremorelikelytouseopen

sourcetoolsthanlowadopters

16

Thecriticalroleofopensourcetoolsandframeworks

inmodelbuildingandinference

18

Theopensourcenatureofatoolhasapositiveinfluence

onitsadoption

20

GenAIandthecloudnativeapproach

23

Cloudnativeandhybridcloudstrategiesarefoundational

tohoworganizationsdeployandhosttheirGenAImodels

23

Kubernetesasakeyenablerforhostingscalable

GenAIworkloads

25

Cloud-basedinfrastructureleadsthewayin

GenAImodelbuilding,withhybridandon-premises

solutionsremainingkey

27

ChallengesinGenAIadoption

29

PrimaryconcernsofGenAIadoption

30

InvestmentinGenAI

31

Impactonemployment

33

ThefutureofGenAIisopen

34

Topprioritiesforopensourceprojects

34

TheroleofopensourceAIinthefutureofGenAI

36

Conclusionsandrecommendations

38

Methodology

40

Aboutthesurvey

40

Data.Worldaccess

42

Respondentdemographics

42

Abouttheauthors

43

Acknowledgments

44

SHAPINGTHEFUTUREOFGENERATIVEAI3

SHAPINGTHEFUTUREOFGENERATIVEAI4

Foreword

Afewdaysbeforethisreportwaspublished,myson,whoispursuinghisBachelorofMusicdegree,calledmetoaskwhatIthoughttheimpactwouldbeof“opensourceGenerativeAI”onthemusicindustry.“DidIthinkthatopensourceGenerativeAIwouldhelp

creators,orhurtthem?”heasked.Inearlydroppedthephone.OfcourseItookhimthroughmyreasoningforwhyopennesswasthewaytobuildatrustedfuturefordigitalcreationsofallkinds,betheydigitalmusic,ordigitalapplicationsusedinanindustrycontext.

Ievenshowedhimsomedata!

WeknowthatGenAIistransformingindustriesatanunprecedentedpace.Asthistechnologymovesintothemainstream,

organizationsarerallyingaroundtheideathatAI’sfuturemustbeopen.Infact,82%oforganizationsbelieveopensourceAIiscriticalforensuringapositiveAIfuture,and83%agreethatAIneedstobeincreasinglyopentofostertrust,collaboration,andinnovation.Tome,thisistheheadlinetakeawayfromthisreport.

TheLinuxFoundationisproudtochampionthisvisionbynurturinganecosystemwhereopennessdrivesprogress.ProjectslikePyTorchandinitiativessuchastheGenerativeAICommonsexemplifyhowopensourcefuelsinnovation.Meanwhile,theLFAI&DataFoundation’sModelOpennessFrameworkanditscompaniontoolsareempoweringmodelcreatorsanduserswithpractical,transparentguidanceforbuildingandadoptingopenAIsystems.

Cloudnativetechnologiesarealsocentraltothisevolution.NotonlycancloudnativeprovideascalableandreliableplatformforrunningAIworkloadsoncloudinfrastructure,butAIisenhancingcloudnativeofferingsthemselves.Throughsharedstandards,robustframeworks,andsecureinfrastructure,theCloudNativeComputingFoundation(CNCF)isenablingenterprisestoreducecostsandacceleratetheperformanceofAIapplications.Thissymbiosisunderscoresthetransformativepowerofopensourcetomeettoday’sbusinessandtechnicalchallenges.

GenerativeAI’spotentialislimitless,butitssuccessreliesontrust,accessibility,andglobalcollaboration.IamgratefultoLFAI&DataandCNCFforsponsoringhisresearch,andindoingso,creatingdatathatcanhelpdecisionmakingtoscaleandsustainopensourceAIprojects.

Thisreportisatestamenttowhatwecanachievewhentheworldworkstogether,openlyandtransparently.Fornextgenerationcreatorslikemyson,andbusinessdecisionmakers,itprovidesareasontobeoptimistic.

HILARYCARTER

SeniorVicePresident,ResearchTheLinuxFoundation

SHAPINGTHEFUTUREOFGENERATIVEAI5

Executivesummary

Thereport,ShapingtheFutureofGenerativeAI,writtenby

theLinuxFoundation,supportstheimportantroleofopen

sourceintheevolutionandintegrationofgenerativeAI(GenAI)technologieswithinorganizations.Basedonasurveyof316

professionalsacrossdiverseindustries,thereportshowshowopensourceplatformsandtoolsarenotonlyacceleratingGenAIadoptionbutarealsosettingafoundationalframeworkfor

futureAIadvancements.Currently,94%oforganizationsareusingGenAI.Leadingusecasesincludeprocessautomation,contentgeneration,andcodegeneration.

OpensourcesoftwareisalreadyaforceshapingGenAI.On

average,41%ofanorganization’scodeinfrastructurethat

supportsGenAIisopensource.HigheradoptersofGenAIare

morereliantonopensourcecode(47%)comparedtolower

adopters(35%).OrganizationsthatarehigheradoptersofGenAIarenotjustheavyusersofopensourcetechnology;63%arealsosignificantcontributorstoopensource.Consequently,71%of

respondentsreportthatopensourcepositivelyinfluencestheirdecision-making,and73%oforganizationsexpecttoincreasetheiruseofopensourceGenAItoolsoverthenexttwoyears.

CentraltothesuccessoftheGenAIspaceareopensource

frameworkssuchasTensorFlowandPyTorchforbuildingand

trainingGenAImodelsandapplicationframeworksincluding

LangChainandLlamaIndexforinferencing.Theseopensource

frameworksenableorganizationstobuild,train,anddeploy

modelsatafractionofthecostassociatedwithproprietary

tools.Opensourcemodelsempowerorganizationstodevelop

customizedsolutionswhilepreservingtransparencyand

reducingdependencyonclosed-sourceplatforms.Thisflexibilityhasprovedessentialinindustrieswheretrust,transparency,andregulatorycompliancearecritical.

LookingtothefutureofGenAItechnology,opensource’s

influenceintheAIdomainisexpectedtoexpandfurther.This

surveyrevealsthat83%oforganizationsstronglyagreeoragreethatAIneedstobeincreasinglyopen.Additionally,82%reportthatopensourceAIisacriticalcomponentforasustainable

AIfuture,with61%expressingconfidencethatthebenefitsofopensourceoutweightheassociatedrisks.ThegrowthofopensourceGenAItechnologyislikelytobesignificant,with73%oforganizationsexpectingtoincreasetheiruseofopensource

generativetoolsoverthenexttwoyearsand26%anticipatingasubstantialriseinuse.

OrganizationsthatintegrateopensourceGenAItoolsnot

onlybenefitfromreducedcostsbutalsooftencontributetoacollaborativeecosystemthatdrivestechnologicalprogress.Thereportalsodiscussescloudnative’scriticalroleinsupporting

scalableGenAIsolutions.Cloud-basedinfrastructure,

combinedwithopensourceframeworksandtools,allows

organizationstomanageanddeploycomplexAImodelsmoreefficiently.Kubernetes,forinstance,hasemergedasakey

enablerfororchestratingscalableGenAIworkloads,with50%oforganizationsusingKubernetestohostsomeoralloftheirGenAIinferencingworkloads.

“Organizationswithhigherlevelsof

GenAIadoptionarehelpingtoshape

next-generationframeworksand

models,aligningthemmorecloselywithadvanced,real-worldusecases.”

SHAPINGTHEFUTUREOFGENERATIVEAI6

Thisreportrecommendsthatorganizationscontinueto

prioritizeopensourceintheirGenAIstrategiestoremain

competitiveandalignedwithindustrytrends.Italsohighlightstheimportanceofneutralorganizations,suchastheLinux

Foundation,CloudNativeComputingFoundation(CNCF),

andLFAI&DataFoundation,inprovidingopengovernance

structuresthatimprovetrustandcollaboration.AsAIcontinues

toreshapeindustries,opensourcewillremainindispensable,

offeringabalanced,transparent,andcommunity-ledpathway

toinnovationthatwilldefinethefutureofAItechnologies.By

offeringaccessible,adaptable,andcommunity-drivenresources,opensourcehasdemocratizedaccesstoGenAI,allowing

organizationsofallsizestoleveragecutting-edgeAIcapabilitiessecurelyandeffectively.

SHAPINGTHEFUTUREOFGENERATIVEAI7

Introduction

Thisreportexploresthedeployment,use,andchallengesofGenAItechnologiesinorganizationsandtheroleandfutureofopensourceinthisdomain.

LinuxFoundationResearchanditspartnersconductedawebsurveyfromAugustthroughSeptember2024,whichprovidedtheempiricalbasisforthisstudy.Surveyrespondentscreeningensuredthatrespondents:

•Werefamiliar,veryfamiliar,orextremelyfamiliarwiththeadoptionofGenAIintheirorganization

•Workedforanorganization

•Hadprofessionalexperience

Atotalof316respondentscompletedthesurvey.

Therearealsoavarietyofcalloutsthroughoutthisreport.

Thesecalloutsincludeselectedverbatimcommentsin(italicizedbluetextwithnobackgroundcolour)responsetoanopentextquestioninthesurvey,whichasked,“Doyouhaveanyfinal

commentsorthoughtsaboutGenAI?”

SHAPINGTHEFUTUREOFGENERATIVEAI8

GenAIadoptionanduseinorganizations

OrganizationsareadoptingGenAIbecauseof

itsabilitytoaddressabroadarrayofstrategic

andtacticalneeds,includingcontentcreation,

personalizedcustomerexperiences,decision

support,processautomation,employeetraining,andresearchandplanning.Tounderstandthe

developmentanduseofGenAIandhowopen

sourceisimpactingtheevolutionofGenAI,we

needtofirstevaluatehoworganizationsare

involvedwithGenAI,itsleadingusecases,andthematurityofGenAIdeployments.

GenAIadoption

Figure1showstheextentoftheadoptionofGenAI.ThetopchartinFigure1indicatesthat94%of

organizationsareinvolvedwithGenAIandcanbesegmentedintotwocategories:organizationswhohaveveryhighorhighGenAIadoption(42%,higherGenAIadopters)andorganizationswhohaveslightormoderateGenAIadoption(52%,lowerGenAI

adopters).WealsoseeinFigure1that84%of

organizationshaveamoderate,high,orveryhighadoptionofGenAI.

FIGURE1:HOWORGANIZATIONSAREADOPTINGGENAI

TowhatextenthasyourorganizationadoptgenerativeAI?(selectone)

Veryhighadoption:generativeAIiscriticaltowhatourorganizationdoes

Highadoption:generativeAIusedinproductioninselectedareas

Moderateadoption:experimentingwithhowgenerativeAIcanaddvalueinselectedareas

Slightadoption:researchingorevaluatinggenerativeAI

NoadoptionofgenerativeAItoolsandmodels

16%

27%

10%

6%

41%

42%

52%

2024GenAIsurvey,Q7,SampleSize=316

WhatactivitiesdoesyourorganizationundertakewithgenerativeAImodels?(selectallthatapply)segmentedby:

TowhatextenthasyourorganizationadoptedGenAI?(selectone)

WeconsumegenerativeAImodelsforinference

WebuildortraingenerativeAImodels

WeservegenerativeAImodelsinternally

Noneoftheabove

Don'tknowornotsure

65%

61%

69%

38%

33%

44%

43%

36%

52%

8%

10%

5%

7%

8%

6%

TotalSlightormoderateGenAIadoptionHighorveryhighGenAIadoption

2024GenAIsurvey,Q32byQ7,SampleSize=297,ValidCases=297,TotalMentions=479,answeredbyorganizationswhoadoptedGenAIinQ7

SHAPINGTHEFUTUREOFGENERATIVEAI9

GenAIactivitybreakdown:

Consumptiondominatesascustommodelbuildinggainstraction

CoreactivitiesrelatedtoGenAI,includingbuilding(training),

serving,andinferencing(consumingamodel),areshownin

thechartatthebottomofFigure1.Inferencing,at65%overall,isaprimaryGenAIactivity.Inferencingissignificantlyhigher

thaneitherbuildingmodels(38%)orservingthesemodels

(43%).Organizationsarechoosingtotuneand/ortraintheir

ownGenAImodelstomeetspecificbusinessneedsandmake

thesemodelsmoreaccurateandrelevant.Custommodels

alloworganizationstotailorresponses,fine-tunelanguage,

andincorporatedomain-specificknowledgetocreateoutputs

thataligncloselywiththeirbrandandindustryrequirements.

Fine-tuningamodelalsoprovidesenhancedcontrolovertheAI’sevolutionandreducesdependencyonexternalproviders.Figure1(atthebottom)alsoshowsthatorganizationsthathavea

higherlevelofGenAIadoptionalsoaremoreinvolvedinbuilding/trainingmodels(44%),internallyservingthesemodels(52%),

andconsumingthesemodels(69%).

Figure2exploresthevarioustechniquesinusetoimprovetheperformanceofGenAImodels.Theleadingtechnique,promptengineering,isshowingsignificantgainsfornearly80%of

organizationsthathaveadoptedGenAI.Promptengineeringisthepracticeofoptimizinginputs(prompts)todeliverthe

mostaccurate,relevant,orcreativeoutputsfromanAImodel.Bycarefullydesigningprompts,promptengineersimprove

modelperformance.Theeleganceofpromptengineeringisthatthisincreasedperformancedoesnotrequireanychangesto

theunderlyingGenAImodel,althoughitdoesrequireamoredetailedapproachindefininginputs.

Retrievalaugmentationgeneration(RAG)isalsoaleading

techniqueforimprovingperformance.RAGcombinesthe

poweroflargelanguagemodels(LLMs)withreal-time,

relevantinformationretrievaltogeneratehighlyinformedandcontextuallyaccurateresponses.Thisapproachaugments

themodel’soutputsbygroundingthemindomain-specific

information.RAGimprovesmodelperformancebyprovidingabridgebetweenstaticmodelknowledgeanddynamic,up-to-

datecontent,whichisidealforapplicationssuchascustomer

support,research,anddecisionsupportsystems.RAGisdrivingmaterialgainsformorethan70%oforganizationsthathave

adoptedGenAI.

Fine-tuninganLLMisyetanothertechniquethatorganizationscommonlyusetoimprovetheperformanceoftheirGenAI

models.Fine-tuningadjuststheLLM’sinternalparametersbytrainingondomain-specificdata,whichembedsspecialized

knowledgedirectlyintothemodel.Thismakesthemodelmorefluentinspecifictopicsbutlimitsittostaticknowledgepresentduringtraining.Fine-tuningisshowingsignificantgainsfor

nearly70%oforganizationsusingGenAI.

SHAPINGTHEFUTUREOFGENERATIVEAI10

FIGURE2:THETOPTHREETECHNIQUESFORIMPROVINGGENAIMODELPERFORMANCE

HowmuchhavethefollowinggenerativeAItechniquesimprovedtheperformanceofyourbaselineapproach?(oneresponseperrow)filteredfor:Whattechniquesareyouusinginyourorganization?(topthreeshown)

Promptengineering

RAG(RetrievalAugmentedGeneration)

Fine-tuningpre-trainedmodels

Percentorganizational

use

15%42%22%12%2%7%70%

21%36%16%11%4%10%49%

12%32%23%13%2%3%14%46%

0%10%20%30%40%50%60%70%80%90%100%

uExceptionalgainuConsiderablegainaModerategainuMarginalgainuNogainuDiminishedgainaDon'tknowornotsure

2024GenAIsurvey,Q33,SampleSize=297,ValidCases=297,TotalMentions=905,answeredbyorganizationswhoadoptedGenAIinQ7

2024GenAIsurvey,Q34,Samplesize=206to138,sortedbythesumof“Exceptional,considerable,andmoderategain”

SHAPINGTHEFUTUREOFGENERATIVEAI11

Theleft-handchartinFigure3showsthattext(81%),code

(74%),andstructuredortabulardata(48%)aretheleading

GenAImodalities.Text,code,andstructureddataarethemostcommonmodalitiesforGenAIbecausetheyarewidelyavailable,interpretable,andfoundationaltoabroadrangeofapplications.Textdata,whichLLMssupport,coversawidespectrumof

naturallanguageapplications,enablingmodelstogenerate

coherentresponses,summaries,translations,andotherhuman

languageoutputs.Code,asalogicalandrule-basedlanguage,ishighlysuitedforautomatingtasks,generatingscripts,andsupportingsoftwaredevelopment.Structureddata—suchastables,databases,andlabeleddatasets—provideorganizedinformationthatGenAIcanuseforpatternrecognition

anddatasynthesisinareassuchasdecisionsupportandrecommendations.

FIGURE3:COMMONGENAIMODALITIESANDDATAUSE

WhatgenerativeAImodalitiesareyouusingorplanningtouseinyourorganization?(checkallthatapply)

TextCode

StructuredortabulardataMultimodal DevOps Speech VisionAudio

Other(pleasespecify)Don,tknowornotsure

81%

74%

48%

47%

41%

35%

34%

27%

2%

1%

DoesyourorganizationhaveproprietarydatathatcouldbeusedtotrainorimprovetheperformanceofgenerativeAImodels?(selectallthatapply)

22%

oforganizations

usetheirproprietarydatainopensourcemodels

30%

oforganizations

usetheirproprietarydataintheir

proprietarymodels

2024GenAIsurvey,Q31,SampleSize=297,ValidCases=297,Total

Mentions=1,165,answeredbyorganizationswhoadoptedGenAIinQ7

2024GenAIsurvey,Q24,SampleSize=297,ValidCases=297,Total

Mentions=473,answeredbyorganizationswhoadoptedGenAIinQ7

Theright-handchartinFigure3showsthepercentageof

organizationsusingtheirproprietarydatatoimprovethe

performanceoftheirproprietaryGenAImodel(30%)oropensourceGenAImodel(22%).Someorganizationsusetheirowndatatotrainbothproprietaryandopensourcemodels.Whenweredistributethedatabasedonthesethreecategories,we

findthatorganizationsuseproprietarydatatoimprovethe

performancein22%ofproprietarymodels,13%ofopensourcemodels,and9%withbothmodels.Thisyieldsatotalof44%oforganizationsthatareusingproprietarydatatoimprovetheirmodels.

SHAPINGTHEFUTUREOFGENERATIVEAI12

PrimaryGenAIusecases

OrganizationsareusingGenAIinmanyways,althoughtherearefiveprimaryusecases.Figure4showsthattheleadingprimaryusecaseisprocessoptimizationorautomation(25%)followedbycontentgeneration(17%),codegeneration(14%),customer

serviceandsupport(11%),andresearch(6%).

Processautomation/optimizationistheleadingGenAIusecasebecauseitoffersbusinessestransformativeefficiency,reducesmanualtasksanderrors,anddecreasesoperationalcosts.Withitscapacityfornaturallanguageunderstandingandresponse,GenAIcanhandlediversequeriesandtasks,providingamoreadaptableandscalableapproachtoautomation.Byidentifyingpatternsandrecommendingimprovements,GenAInotonly

streamlinesprocessesbutalsocreatesroomforinnovation.

FIGURE4:PRIMARYGENAIUSECASES

What’syourorganization’sprimaryusecaseforgenerativeAI?(selectone)

Top5

ProcessautomationoroptimizationContentgenerationCodegeneration

CustomerserviceandsupportResearch

DataclassificationEducationandtraining

FrauddetectionandpreventionHealthcare

Strategicplanning

None,wedonotusegenerativeAIOther(pleasespecify)Don'tknowornotsure

17%

14%

11%

6%

5%

3%

3%

2%

1%

0%

11%

2%

25%

2024GenAIsurvey,Q13,SampleSize=297,answeredbyorganizationswhoadoptedGenAIinQ7

GenAIisalsousefulforcontent(17%)andcode(14%)generation.Forcontentcreation,GenAIcangeneratearticles,blogs,and

marketingmaterialsinseconds,reducingtheworkloadandensuringconsistencyinstyleandtone.Itenhancesideation,deliveringvariedperspectivesoroutlinesthathelpteams

focusonrefinement.Forcodegeneration,GenAIacceleratesdevelopment,offeringquickprototypes,codesuggestions,anddebuggingsupport.Byautomatingroutinecodingtasks,itreduceserrorsandfreesdeveloperstofocusoncomplexproblemsolving.

SHAPINGTHEFUTUREOFGENERATIVEAI13

GenAIcansupportcustomerservice(11%)byprovidinginstant,constantsupportthroughintelligentchatbotsandvirtual

assistants.Itcanimproveresponsetimes,handlelargevolumesofqueriessimultaneously,andprovideaccurate,context-awareanswers.GenAIcanalsopersonalizeinteractionsbyanalyzingcustomerhistoryandpreferences,deliveringtailoredsolutionsandproactiverecommendations.Additionally,itautomates

repetitiveinquiries,allowinghumanagentstofocusoncomplexcasesthatrequireapersonaltouch.

Figure5showsthefiveleadingusecasesinFigure4segmentedbyhowtheusecaseisintegratedintotheorganization’s

business.Figure5showsthateachofthesefiveprimaryusecasesisuniquelyintegratedintotheorganizationsthat

identifiedit.

FIGURE5:PRIMARYGENAIUSECASESSEGMENTEDBYINTEGRATIONINTOTHEBUSINESS

What’syourorganization’sprimaryusecaseforgenerativeAI?(selectone)segmentedbyHowisyourprimarygenerativeAIusecaseintegratedintoyourbusiness?(selectone)

69%

52%

51%

43%

41%41%

41%

37%

36%

21%

17%

18%

14%

12%

7%

Processautomationoroptimization

Content

generation

Code

generation

Customer

serviceandsupport

Research

GenerativeAIsupportsourinternalprocesses,workflows,ortasks

GenerativeAIisintegratedintoourproductsorservices

WearecreatingsolutionsthatenablethirdpartiestoutilizegenerativeAIintheirproducts

2024GenAIsurvey,Q13top5byQ15,SampleSize=166,DKNSandToosoontotellresponsesexcludedfromtheanalysis

SHAPINGTHEFUTUREOFGENERATIVEAI14

Processautomationoroptimizationshowsarelativelyhighlevelofsupportforinternalprocesses(51%)butalesserdegreeof

integrationwithanorganization’sproductsandservices(37%).Thislesserdegreeofintegrationreflectsthecomplexityof

aligningGenAImodelswithorganizationalworkflows

Theintegrationofcontentgeneration(52%),incontrast,ismorereadilyachievable,becauseanorganization’scontentisalreadyinahighlyconsumableformforGenAI.Codegenerationseesasignificantlyhighlevelofsupportforinternalactivities(69%)inpartbecausecodegenerationprovidesaboundeddomainthatoffersusefulresultswithoutanexcessivedegreeofintegrationorcustomizationtoanorganization’senvironment.However,

thereareseveralreasonswhytheintegrationofcodegenerationisjust17%,whichwe’llexploreinFigure6.

Customerservicehasarelativelyhighlevelofsupportfor

internalprocesses(41%)aswellasintegrationwithproducts

andservices(41%).Theelevatedinterestincreatingsolutionsbythirdparties(18%)reflectsthefactthateveryorganizationhastostaffcustomerserviceandsupportactivities,sothepayoffindevelopinganeffectivesolutionisconsiderable.

“GenAIappliesamathematicalmodel

toaninherentlysubjectiveprocess.It

willneverbegoodenoughinageneric

contextbecausedifferentpeoplewant

differentandincompatiblethingsfromit.However,ithasthepotentialtobecomegoodenoughinsmall,specializeduses,ifitcanstophallucinating.”

Researchisanotherusecasewhereadvancedanalytics

toolprovidersseetremendousopportunityforcreating

solutions.Becausemostdataincludesmetadata,dataisoftenstructured,whichimprovesitsspecificitywhilesimplifying

howorganizationscanuseit.Whiletheinternalusecasesforresearchisintuitivelyclear,thedeploymentofsuchsystemsisstillinitsinfancy.

Figure6showsthefiveleadingusecasesfromFigure4

segmentedbythelevelofadoption.

Contentgenerationisthemosthighlyintegratedusecase(Figure4)isalsoshowninFigure5asthemosthighlyfullydeployed

usecase(22%)andhasthehighestlevelofinitialproductiondeployments(46%).ThereasonforthisislikelyduetoamuchhigherROIthanotherusecasesduetotherelativeeaseof

implementationandthesignificantoperationalvalueadd.

Processautomationisfullydeployedinjust16%oforganizationsusingGenAIandanadditional32%areininitialproduction

deployment.ThisreflectsthechallengesofdefiningthescopenecessaryforprocessautomationwithaGenAImodel.

Bothcodegeneration(codespecificGenAImodels)and

customerserviceandsupport(LLMs)showlowfulldeploymentratesbutaveryhighlevelofinitialdeploymentandexperimentaldeploymentssuggestingthatfulldeploymentratescould

increasesignificantlyiftheseinitialandexperimentaldeplo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论