2023年中考数学试题分项汇编:三角形及全等三角形(共30题)(解析版)_第1页
2023年中考数学试题分项汇编:三角形及全等三角形(共30题)(解析版)_第2页
2023年中考数学试题分项汇编:三角形及全等三角形(共30题)(解析版)_第3页
2023年中考数学试题分项汇编:三角形及全等三角形(共30题)(解析版)_第4页
2023年中考数学试题分项汇编:三角形及全等三角形(共30题)(解析版)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题15三角形及全等三角形(30题)

一、单选题

1.(2023.吉林长春・统考中考真题)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点。为A4,、

的中点,只要量出力®的长度,就可以道该零件内径AB的长度.依据的数学基本事实是()

A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等

C.两余直线被一组平行线所截,所的对应线段成比例D.两点之间线段最短

【答案】A

【分析】根据题意易证AAOB丝AA'QB'(SAS),根据证明方法即可求解.

【详解】解:。为A4'、的中点,

:.OA=OA,OB=OB,

■.■ZAOB=ZAOB'(对顶角相等),

.,.在与ZWOB'中,

OA=OA'

<ZAOB=ZA'OB',

OB=OB

.△AO的△AO?(SAS),

:.AB^AB,

故选:A.

【点睛】本题考查了全等三角形的证明,正确使用全等三角形的证明方法是解题的关键.

2.(2023・四川宜宾・统考中考真题)如图,AB//CD,且NA=40。,ZD=24°,则NE等于()

B

E

A.40°B.32°C.24°D.16°

【答案】D

【分析】可求NACD=40。,再由NACD=NO+/E,即可求解.

【详解】解:

:.ZACD=ZA=40°,

•/ZACD=ZD+ZE,

二24°+NE=40°,

.-.ZE=16°.

故选:D.

【点睛】本题考查了平行线的性质,三角形外角性质,掌握三角形外角的性质是解题的关键.

3.(2023・云南・统考中考真题)如图,A3两点被池塘隔开,AB、C三点不共线.设AC、3c的中点分别

为M、N.若MN=3米,则Afi=()

A.4米B.6米C.8米D.10米

【答案】B

【分析】根据三角形中位线定理计算即可.

【详解】解:;AC、的中点分别为“、N,

是AABC的中位线,

AB=2跖V=6(米),

故选:B.

【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解

题的关键.

4.(2023・四川眉山•统考中考真题)如图,“RC中,AB=AC,ZA=40°,则—ACD的度数为()

A

B'D

A.70°B.100°C.110°D.140°

【答案】C

【分析】根据等腰三角形的等边对等角和三角形的内角和定理,即可解答.

【详解】解:・.・A3=AC,NA=40。,

・・・…七70°,

.-.ZACL>=ZA+ZB=110°,

故选:C.

【点睛】本题考查了等腰三角形的等边对等角性质,三角形内角和定理,熟知上述概念是解题的关键.

5.(2023・湖南•统考中考真题)下列长度的各组线段能组成一个三角形的是()

A.1cm,2cm,3cmB.3cm,8cm,5cm

C.4cg5cg10cmD.4cm95cg6cm

【答案】D

【分析】根据两边之和大于第三边,两边之差小于第三边判断即可.

【详解】A.lcm+2cm=3cm,不符合题意;

B.3cm+5cm=8cm,不符合题意;

C.4cm+5cm=9cm<10cm,不符合题意;

D.4cm+5cm=9cm>6cm,符合题意,

故选:D.

【点睛】本题考查了是否构成三角形,熟练掌握三角形两边之和大于第三边是解题的关键.

6.(2023・山西・统考中考真题)如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光

心。的光线相交于点尸,点尸为焦点.若4=155。,/2=30。,则N3的度数为()

C.55°D.60°

【答案】C

【分析】利用平行线的性质及三角形外角的性质即可求解.

【详解】解::AB〃5,

Zl+ZBFG>=180°,

...NBFO=180°-155°=25°,

ZP6>F=Z2=30°,

,Z3=ZPOF+ZBFO=30°+25°=55°;

故选:C.

【点睛】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.

7.(2023・福建・统考中考真题)阅读以下作图步骤:

①在。4和08上分别截取OCOD,使OC=O£>;

②分别以CD为圆心,以大于;CD的长为半径作弧,两弧在-493内交于点M;

③作射线OM,连接如图所示.

根据以上作图,一定可以推得的结论是()

A.Z,1=Z.2S.CM=DMB.N1=N3且CM=ZW

C.Z1=Z2S.OD=DMD.N2=/3且OD=DM

【答案】A

【分析】由作图过程可得:OD=OC,CM=DM,再结合=可得△(%>“之gOA/eSS),由全等三

角形的性质可得Zl=Z2即可解答.

【详解】解:由作图过程可得:OD=OC,CM=DM,

":DM=DM,

:.(SSS).

/.Z1=Z2.

,A选项符合题意;

不能确定OC=CM,则Zl=Z3不一定成立,故B选项不符合题意;

不能确定8=。加,故C选项不符合题意,

不一定成立,则/2=/3不一定成立,故D选项不符合题意.

故选A.

【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是

解答本题的关键.

8.(2023•浙江台州•统考中考真题)如图,锐角三角形ABC中,AB=AC,点。,E分别在边AB,AC上,

连接BE,CD.下列命题中,假命题是().

A.若CD=BE,则=B.若NDCB=NEBC,则=

C.若3O=CE,则=D.若NDCB=NEBC,则3O=CE

【答案】A

【分析】由AB=AC,可得NMC=NACB,再由CE>=3E,BC=CB,由SSA无法证明ABCD与ACBE全

等,从而无法得至“NDCB=NEBC;证明VAfiE@/ACD可得CD=3E;证明VABE@/ACD,可得

ZACD=ZABE,即可证明;证明△■DBCMAECB(ASA),即可得出结论.

【详解】解:•;AB=AC,

:.ZABC=ZACB,

■:若CD=BE,

又BC=CB,

:.ABCD与ACBE满足“s&r的关系,无法证明全等,

因此无法得出/DCB=/EBC,故A是假命题,

•:若NDCB=NEBC,

:.ZACD=ZABE,

在AABE和中,

ZACD=ZABE

<AB=AC,

ZA=ZA

・・.△ABE=AACD(A5A),

:.CD=BEf故B是真命题;

若BD=CE,则AD=A£;,

在aAB石和△ACD中,

AB=AC

<ZA=ZA,

AE=AD

:.^ABE=AACD(SAS)9

:.ZACD=ZABE,

■:NABC=ZACB,

:.ZDCB=ZEBC,故C是真命题;

若/DCB=/EBC,则在△D5C和中,

ZABC=ZACB

<BC=BC,

ZDCB=ZEBC

.,•△DBC=AECB(ASA),

BD=CE,故D是真命题;

故选:A.

【点睛】本题考查等腰三角形的判定和性质,全等三角形的判定和性质,命题的真假判断,正确的命题叫

真命题,错误的命题叫假命题,判断命题的真假关键是掌握相关性质定理.

9.(2023・河北・统考中考真题)在AABC和中,ZB=NB'=30。,AB=ABf=6,AC=AC=4.已知

NC=废,则NC=()

A.30°B.n°C."。或180°—〃°D.30°或150°

【答案】C

【分析】过A作AD工BC于点。,过A作AD'LB'C'于点P0,求得AD=AD'=3,分两种情况讨论,利

用全等三角形的判定和性质即可求解.

【详解】解:过A作AD1BC于点。,过A作AD」3'C'于点〃,

VZB=ZB'=30°,AB=AB'=6,

:.AD=Aiy=3,

当B、C在点。的两侧,B'、C'在点次的两侧时,如图,

:AD=A£>'=3,AC=AC'=4,

RtAACZ^RtAA,C,D,(HL),

ZC'=ZC=n°;

当B、C在点。的两侧,B'、C'在点用的同侧时,如图,

VAD=A'iy=3,AC=A'C'=4,

:.RtZ\ACD^RiZ\A'C'D'(HL),

ZA'C'D'=ZC=n°,即ZA'C'5'=180°—ZA'C'£>'=180°—M°;

综上,/C'的值为〃。或180。-力。.

故选:C.

【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.

二、填空题

10.(2023•江苏连云港•统考中考真题)一个三角形的两边长分别是3和5,则第三边长可以是.(只

填一个即可)

【答案】4(答案不唯一,大于2且小于8之间的数均可)

【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得

5-3<x<5+3,再解即可.

【详解】解:设第三边长为x,由题意得:

5—3<x<5+3,

贝U2Vx<8,

故答案可为:4(答案不唯一,大于2且小于8之间的数均可).

【点睛】此题主要考查了三角形的三边关系:第三边的范围是:大于已知的两边的差,而小于两边的和.

11.(2023•浙江金华・统考中考真题)如图,把两根钢条。4的■个端点连在一起,点C,。分别是Q4,OB

的中点.若CD=4cm,则该工件内槽宽AB的长为cm.

【答案】8

【分析】利用三角形中位线定理即可求解.

【详解】解::点C,。分别是OA的中点,

CD^-AB,

2

/.AB=2CD=8(cm),

故答案为:8.

【点睛】本题考查了三角形中位线定理的应用,掌握“三角形的中位线是第三边的一半”是解题的关键.

12.(2023・新疆・统考中考真题)如图,在AABC中,若AB=AC,AD=BD,NC4D=24。,则NC=

A

【分析】根据等边对等角得出==再有三角形内角和定理及等量代换求解即可.

【详解】解:;AB=AC,AD=BD,

/.ZB=NC,NB=NBAD,

;./B=/C=/BAD,

•/ZB^ZC+ZBAC=180°,

ZB+ZC+ZBAD+ZCAD=180°,即3/C+24°=180°,

解得:NC=52。,

故答案为:52.

【点睛】题目主要考查等边对等角及三角形内角和定理,结合图形,找出各角之间的关系是解题关键.

13.(2023・安徽•统考中考真题)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的

计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个

1(AR2-Ar2

结论:如图,AD是锐角AABC的高,则BC+———当AB=7,BC=6,AC=5时,CD=

21nC

【答案】1

【分析】根据公式求得3。,根据8=即可求解.

【详解】解:AB=1,BC=6,AC=5,

AB2-AC26+"

BD=-JDC~\---------------------------=5

2BCI

:.CD=BC-BD=6-5=1,

故答案为:1.

【点睛】本题考查了三角形的高的定义,正确的使用公式是解题的关键.

14.(2023•浙江・统考中考真题)如图,在44BC中,AC的垂直平分线交BC于点O,交AC于点E,

ZB=ZADB.若45=4,则。C的长是.

【答案】4

【分析】由=可得AD=M=4,由£>£■是AC的垂直平分线可得AD=OC,从而可得OC=AB=4.

【详解】解:;NB=NADB,

,AD=AB=4,

,/DE是AC的垂直平分线,

,AD=DC,

:.DC=AB=4.

故答案为:4.

【点睛】本题主要考查了线段垂直平分线的性质以及等角对等边等知识,熟练掌握相关知识是解答本题的

关键.

15.(2023・湖北随州・统考中考真题)如图,在Rt^ABC中,NC=90。,AC=8,BC=6,。为AC上一点,

若BD是/ABC的角平分线,则AD=.

【答案】3

【分析】首先证明CD=OP,BC=BP=6,^CD=PD=x,在RMADP中,利用勾股定理构建方程即可

解决问题.

【详解】解:如图,过点。作的垂线,垂足为巴

C

D

---------f---------------*

在RtZXABC中,VAC=8,BC=6,

AB=y/AC2+BC2=\l82+62=10,

,/3D是/ABC的角平分线,

,ZCBD=ZPBD,

VZC=ZBPD=90°,BD=BD,

:.△BDC^ABDP(AAS),

:.BC=BP=6,CD=PD,

设CD=PD=x,

在RSADP中,VPA=AB-BP=4,AD=8-x,

:.%2+42=(8-x)2,

x=3,

・・・AD=3.

故答案为:3.

【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌

握基本知识,属于中考常考题型.

16.(2023・湖北十堰•统考中考真题)一副三角板按如图所示放置,点A在DE上,点尸在8C上,若ZEAB=35°,

则ZDFC=°.

【答案】100°

【分析】根据直角三角板的性质,得至!JNDEE=45°,N£=NB=9O。,结合/1=/2得至UN应LB=/BEE=35°,

利用平角的定义计算即可.

【详解】解:如图,根据直角三角板的性质,得到"EE=45。,ZE=ZB=90°,

":Z1=Z2,

/.ZEAB=ZBFE=35°,

ZDFC=180°-35°-45°=100°.

故答案为:100。.

【点睛】本题考查了三角板的性质,直角三角形的性质,平角的定义,熟练掌握三角板的性质,直角三角

形的性质是解题的关键.

17.(2023•浙江杭州•统考中考真题)如图,点分别在AABC的边AB,AC上,且DE〃3C,点厂在线段

8C的延长线上.若NADE=28。,NACF=118。,则/A=.

【分析】首先根据平行线的性质得到/3=NADE=28。,然后根据三角形外角的性质求解即可.

【详解】VDE//BC,ZADE=28°,

:.ZB=ZADE=28°,

,:ZACF=118°,

:.ZA=ZACF-ZB=118°-28°=90°.

故答案为:90°.

【点睛】此题考查了平行线的性质和三角形外角的性质,解题的关键是熟练掌握以上知识点.

18.(2023・湖北荆州•统考中考真题)如图,8为R3ABC斜边A3上的中线,E为AC的中点.若AC=8,

8=5,则DE_.

C

E

A-------D--------B

【答案】3

【分析】首先根据直角三角形斜边中线的性质得出A3,然后利用勾股定理即可得出BC,最后利用三角形

中位线定理即可求解.

【详解】解::在RtaABC中,CD为RtaABC斜边A3上的中线,8=5,

AB=2CD=10,

BC=JAB。-AC。=VIO2-82=6,

:E为AC的中点,

/.DE」BC=3

2

故答案为:3.

【点睛】本题主要考查直角三角形的性质,三角形中位线定理,掌握直角三角形中斜边上的中线等于斜边

的一半是解题的关键.

19.(2023・湖南•统考中考真题)如图,在中,ZC=90°,按以下步骤作图:①以点A为圆心,以

小于AC长为半径作弧,分别交ACAB于点“,N;②分别以N为圆心,以大于;的长为半径

作弧,在NBAC内两弧交于点。;③作射线4。,交BC于点D.若点。到A3的距离为1,则以>的长为

【分析】根据作图可得4)为一。山的角平分线,根据角平分线的性质即可求解.

【详解】解:如图所示,过点。作DESAB于点E,依题意DE=1,

c

D

根据作图可知AD为/C4B的角平分线,

・.,DCLAC.DELAB

:.CD=DE=1,

故答案为:1.

【点睛】本题考查了作角平分线,角平分线的性质,熟练掌握基本作图以及角平分线的性质是解题的关键.

3

2。.(2。23・广东深圳・统考中考真题)如图,在中,.=心tanB=,点。为BC上一动点,连接

S—

AD,将△ABD沿AD翻折得到VADE,DE交AC于点G,GE<DG,且AG:CG=3:1,则三角.

'三角形ADG

【分析】AMLBD于点M,ANIDE于点、N,则40=4V,过点G作GPL5C于点尸,设A〃=12a,

根据tan3=4^~=;得出3A7=16。,继而求得A/=《AM。+BM2=20a,CG=5a,AG=15a,再利用

CP3_________

tanC=tanB=—=-,求得3尸=3。,。尸=4。,利用勾股定理求得GN=J,AG?-AN。=9a,

EN=y/AE2-AN2=16a>故EG=EN-GN=1a,

【详解】由折叠的性质可知,八4是NBDE的角平分线,AB=AE,用HL证明/AWN,从而得

到DM=ZW,设DM=DN=x,则DG=x+9。,DP=12a-x,利用勾股定理得到。P?+GP?=DG?即

doo1275

(12a-x)-+(3a)2=(x+9a)\化简得彳=亍*从而得出。G=ja,利用三角形的面积公式得到:

S三角形AGE*G.ANEG7。_49

S=MADG-DGANDG—a75

27

作叨于点3,。后于点可,则AM=4V,

过点G作GPL3c于点P,

A

设AM=12a,则物1=16。,AB=yjAM2+BM2=20a-

XVAB=AC,AM±BD,

:.CM^AM^Ua,AB^AC=20a,NB=NC,

':AG:CG=3:1,gpCG=-AC,

4

CG=5afAG=15a,

CP3

在RtZXPCG中,CG=5a,tanC=tanB=——=—,

CP4

设GP=3m,则CP=4m,CG=yjGP2+CP2=5m

m=a

:.GP=3a,CP=4a,

VAG=15a,AM=AN=12a,ANIDE,

GN=^ACf-AN2=9a,

VAB=AE^20a,AN=l2a,ANIDE

EN=yjAE2-AN2=16a,

/.EG=EN—GN=7a,

VAD=AD,AM=AN,AMLBD,ANIDE,

:.△ADAf四△ADN(HL),

:.DM=DN,

设DM=DN=x,则OG=DN+GZV=x+9a,DP=CM-CP-DM=l6a-4a-x=l2a-x,

在RtAPZX;中,DP2+GP2=DG2,HP(12a-x)2+(3a)2=(x+9a)2,

化简得:x=»a,

.75

DG=x+9Q=—a,

7

...S三角形AGE*GANEG7。_49

DG75

S三角彩ADG-DGAN—a

27

故答案是:三.

【点睛】本题考查解直角三角形,折叠的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等

知识,正确作出辅助线并利用勾股定理列出方程是解题的关键.

三、解答题

21.(2023•江苏苏州・统考中考真题)如图,在中,AB=为“RC的角平分线.以点A圆心,

AD长为半径画弧,与AB,AC分别交于点E,F,连接。尸.

(1)求证:NADE^JADF;

⑵若ABAC=80°,求NBDE的度数.

【答案】(1)见解析

(2)NBDE=2。。

【分析】(1)根据角平分线的定义得出N3AD=NC4D,由作图可得AE=AF,即可证明VADEZVADF;

(2)根据角平分线的定义得出ZEW=4O。,由作图得出=则根据三角形内角和定理以及等腰三角

形的性质得出NADE=70。,ADJ.BC,进而即可求解.

【详解】(1)证明:为AABC的角平分线,

ZBAD=ZCAD,

由作图可得

在VADE和△AD尸中,

AE=AF

<NBAD=ACAD,

AD=AD

/.NADE^/ADF(SAS);

(2)VZBAC=80°,A。为AABC的角平分线,

/.ZEAD=4O°

由作图可得&£=&£),

ZADE=1O°,

VAB=AC,AD为AABC的角平分线,

,AD1BC,

:.ZBDE=20°

【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,角平分线的定义,熟练掌握等

腰三角形的性质与判定是解题的关键.

22.(2023・江西•统考中考真题)(1)计算:W+tan45。-3°

(2)如图,AB=AD,AC平分N3AD.求证:△ABC丝△ADC.

【答案】(1)2

(2)见解析

【分析】(1)先计算立方根,特殊角三角函数值和零指数幕,再计算加减法即可;

(2)先由角平分线的定义得到/A4C=/DAC,再利用SAS证明△ABC四△ADC即可.

【详解】解:(1)原式=2+1-1

=2;

(2)平分4AD,

ABAC=ADAC,

在AABC和八位)。中,

AB=AD

<ABAC=ADAC,

AC=AC

:.△ABC丝△AT>C(SAS).

【点睛】本题主要考查了实数的运算,零指数累,特殊角三角函数值,全等三角形的判定,角平分线的定

义等等,灵活运用所学知识是解题的关键.

23.(2023•云南・统考中考真题)如图,C是的中点,AB=ED,AC=EC.求证:AABC沿AEDC.

【分析】根据C是3。的中点,得到3C=C。,再利用SSS证明两个三角形全等.

【详解】证明:;C是AD的中点,

:.BC=CD,

在AABC和中,

BC=CD

<AB=ED,

AC=EC

:△ABC均EDC(SSS)

【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.

24.(2023・四川宜宾•统考中考真题)已知:如图,AB//DE,AB=DE,AF=DC.求证:ZB=NE.

【答案】见解析

【分析】根据平行线的性质得出NA=〃,然后证明AC=。/,证明△ABC四△OEF(SAS),根据全等三

角形的性质即可得证.

【详解】证明:

ZA=ZD,

•/AF=DC,

:.AF+CF^DC+CF

即AC=DF

在AABC与△。环中

AC=DF

<ZA=ZD,

AB=DE

:.△(SAS),

・•・ZB=ZE.

【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.

25.(2023・福建・统考中考真题)如图,OA=OC,OB=OD,ZAOD=ZCOB.求证:AB=CD.

【答案】见解析

【分析】根据已知条件得出NAO3=NCOD,进而证明如四△W,根据全等三角形的性质即可得证.

【详解】证明:・.・NAOD=NCOB,

ZAOD-/BOD=ZCOB-ZBOD,

即ZAOB=ZCOD.

在AAOB和△COD中,

OA=OC,

<Z.AOB=/COD,

OB=OD,

:AAOB%KOD

AB=CD.

【点睛】本小题考查等式的基本性质、全等三角形的判定与性质等基础知识,考查几何直观、推理能力等,

掌握全等三角形的性质与判定是解题的关键.

26.(2023•全国•统考中考真题)如图,点C在线段BD上,在AABC和△JDEC中,ZA=NDAB=DE,NB=NE.

求证:AC=DC.

【答案】证明见解析

【分析】直接利用ASA证明△ABC且△OEC,再根据全等三角形的性质即可证明.

【详解】解:在&4BC和AZJEC中,

ZA=ZD

AB=DE

ZB=ZE

:.AABC'DEC(ASA)

AC=DC.

【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.

27.(2023・四川乐山・统考中考真题)如图,AB、CD相交于点O,AO=BO,AC〃DB.求证:AC=BD.

【答案】见解析

【分析】要证明AC=BD,只要证明八AOC2△BOD,根据AC//DB可得/A=NB,ZC=ZD,又知AO=BO,

则可得到4AOC^ABOD,从而求得结论.

【详解】(方法一)

•ZAC//DB,

.,.ZA-ZB,NC=ND.

在4AOC与小BOD中

:NA=NB,ZC=ZD,AO=BO,

/.△AOC^ABOD.

;.AC=BD.

(方法二):AC〃DB,

.•.ZA=ZB.

在△AOC与ABOD中,

ZA=NB

V<AO=BO,

ZAOC=NBOD

.•.△AOC^ABOD.

;.AC=BD.

28.(2023・山东临沂•统考中考真题)如图,ZA=90°,AB=AC,BD±AB,BC=AB+BD.

(1)写出A3与应(的数量关系

(2)延长8C到E,使CE=3C,延长DC到歹,使CF=DC,连接族.求证:EF±AB.

(3)在(2)的条件下,作—ACE的平分线,交AF于点H,求证:AH=FH.

【答案]⑴回1网=的

(2)见解析

(3)见解析

【分析】(1)勾股定理求得结合已知条件即可求解;

(2)根据题意画出图形,证明ACBD丝ACEP,得出NE="BC=45。,则防〃即可得证;

(3)延长BAEV交于点",延长CH交ME于点G,根据角平分线以及平行线的性质证明EG=EC,进而

证明AAHC式AMG(AAS),即可得证.

【详解】(1)解::NA=9()o,AB=AC

BC=42AB,

BC=AB+BD

6AB=AB+BD

即(夜-1)AB=80;

(2)证明:如图所示,

A

D

:.ZA=90°,AB=AC

:.^ABC=45°,

*/BD.LAB,

:.ZDBC=45°

♦:CE=BC,Z1=N2,CF=DC

:.ACBD^ACEF

:.ZE=ZDBC=45°

EF//BD

AB±EF

(3)证明:如图所示,延长5A跖交于点M,延长S交旌于点G,

M

D

VEF±AB,AC±AB,

:.ME//AC,

:.ZCGE=ZACG

S是-4CE的角平分线,

・•・ZACG=NECG,

:.ZCGE=ZECG

:.EG=EC

■:小CBD%CEF,

:.EF=BD,CE=CB,

:.EG=CB,

XVBC=AB+BD,

:.EG=AB+BD=AC+EF,

M

BPFG+EF=AC+EF,

:.AC=EG,

又AC〃/G,则N/MG=NHFG,

在中,

ZHAG=ZHFG

<ZAHG=NFHG,

AC=FG

・・・△AW8z/WG(AAS),

:-AH=HF

【点睛】本题考查了全等三角形的与判定,等腰三角形的性质与判定,勾股定理,平行线的性质与判定,

熟练掌握全等三角形的性质与判定是解题的关键.

29.(2023・山东聊城・统考中考真题)如图,在四边形ABCD中,点E是边上一点,且鲂=8,

ZB=ZAED=ZC.

⑴求证:ZEAD=ZEDA;

⑵若NC=60。,DE=4时,求△>1£1£>的面积.

【答案】(1)见解析

⑵46

【分析】(1)由ZB=NA£E>求出44E=NCED,然后利用AAS证明A&IEMACED,可得E4=ED,再由等

边对等角得出结论;

(2)过点E作跖工AD于R根据等腰三角形的性质和含30。直角三角形的性质求出DR和AD,然后利

用勾股定理求出政,再根据三角形面积公式计算即可.

【详解】(1)证明::"=NAED,

/.180°-ZB=180°-ZAED,即ZBEA+ZBAE=ZBEA+ZCED,

:.ZBAE=ZCED,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论