2025年牛津译林版高一数学下册月考试卷_第1页
2025年牛津译林版高一数学下册月考试卷_第2页
2025年牛津译林版高一数学下册月考试卷_第3页
2025年牛津译林版高一数学下册月考试卷_第4页
2025年牛津译林版高一数学下册月考试卷_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年牛津译林版高一数学下册月考试卷138考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共7题,共14分)1、lnx+x-2=0解所在区间为()

A.(1;2)

B.(2;3)

C.(3;4)

D.(4;5)

2、如图;一个棱长为a的立方体内有1个大球和8个小球,大球与立方体的六个面都相切,每个小球与大球外切且与共顶点的三个面也相切,现在把立方体的每个角都截去一个三棱锥,截面都为正三角形并与小球相切,变成一个新的立体图形,则原立方体的每条棱还剩余()

A.

B.

C.

D.

3、【题文】圆与圆A.相离B.相交C.外切D.内切4、【题文】函数定义域是()A.(1)B.[0,]C.(0,1)D.(1,)5、右图程序运行结果是()

A.32B.34C.35D.366、为了得到函数y=3sin(2x+)的图象,只要把函数y=3sinx的图象上所有的点()A.横坐标缩短到原来的倍(纵坐标不变),再把所得图象所有的点向左平移个单位长度B.横坐标伸长到原来的2倍(纵坐标不变),再把所得图象所有的点向左平移个单位长度C.向右平移个单位长度,再把所得图象所有的点横坐标缩短到原来的倍(纵坐标不变)D.向左平移个单位长度,再把所得图象所有的点横坐标伸长到原来的2倍(纵坐标不变)7、对于集合M,N,定义:M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M).设集合M={y|y=x2-4x+3,x∈R},N={y|y=-2x,x∈R},则M⊕N=()A.(-∞,-1)∪[0,+∞)B.[-1,0)C.(-1,0]D.(-∞,-1]∪(0,+∞)评卷人得分二、填空题(共8题,共16分)8、下列结论正确的是有____.

①幂函数的图象一定过原点;

②当a<0时,幂函数y=xa是减函数;

③当a>1时,幂函数y=xa是增函数;

④函数y=x2既是二次函数,也是幂函数.9、若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积之比为____.10、已知则f(x)的定义域为____.11、【题文】函数的图象经过点A,若点A在直线上,其中则的最小值为____12、若f(sin2x)=5sinx﹣5cosx﹣6(0<x<π),则f(﹣)=____.13、设扇形的半径长为2,圆心角为则扇形的面积是______.14、化简:=______.15、420和882的最大公约数是______.评卷人得分三、证明题(共9题,共18分)16、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.

求证:(1)∠CFD=∠CAD;

(2)EG<EF.17、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.18、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.19、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.20、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.

求证:(1)∠CFD=∠CAD;

(2)EG<EF.21、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.22、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.23、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.24、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、作图题(共3题,共12分)25、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.26、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.

27、请画出如图几何体的三视图.

评卷人得分五、计算题(共4题,共20分)28、计算:.29、如果从数字1、2、3、4中,任意取出两个数字组成一个两位数,那么这个两位数是奇数的概率是____.30、如图,在直角坐标系内有两个点A(-1,-1),B(2,3),若M为x轴上一点,且使MB-MA最大,求M点的坐标,并说明理由.31、设cos(α﹣)=﹣sin(﹣β)=且<α<π,0<β<求cos()的值.参考答案一、选择题(共7题,共14分)1、A【分析】

设函数f(x)=lnx+x-2;

则f(1)=-1<0;f(2)=ln2>0;

故有f(1)•f(2)<0;

由零点的判定定理可知:

函数f(x)=lnx+x-2在区间(1;2)上有零点;

故lnx+x-2=0解所在区间为(1;2)

故选A

【解析】【答案】构造函数f(x)=lnx+x-2;可得f(1)•f(2)<0,由零点的判定定理可得答案.

2、D【分析】

大球的半径为设小球的半径r,则

设小球切截面CDE于F,则

设AC=x,利用等积法求得所以

故选D.

【解析】【答案】先得出大球的半径为设小球的半径r,利用三角形的内切圆半径公式用a来表示r;再设小球切截面CDE于F,表示出AF的长,最后利用等积法求得结果即可.

3、B【分析】【解析】知识分析:本题考查圆的方程及其互相转化关系;圆与圆的位置关系及其判断也是考查重点.

思路分析:要知道圆与圆的位置关系得知道圆心的坐标以及圆心距与两圆半径;因此先求坐标,再求距离.

解:

故,圆心坐标与半径分别为

所以相交;选B

点评:本题属于概念题,掌握基本概念及判断方法即可。【解析】【答案】B4、C【分析】【解析】略【解析】【答案】C5、B【分析】【解答】a=1,b=1;t=2,满足条件t≤5,执行循环;

a=2,b=3;t=3,满足条件t≤5,执行循环;

a=5,b=8;t=4,满足条件t≤5,执行循环;

a=13,b=21;t=5,满足条件t≤5,执行循环;

a=34,b=55;t=6,不满足条件t≤5,退出循环。

输出a=34

故选B.

【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,当不满足循环的条件时输出结果,从而求出所求.6、A【分析】【解答】解:y=3sinx在纵坐标不变,横坐标缩短到原来的倍得到函数y=3sin2x的图象。

再再把所得图象所有的点向左平移个单位长度得到y=3sin(2x+)的图象。

故选A

【分析】根据图象的伸缩变换的规律:自变量x乘以ω,则图象的纵坐标不变,横坐标变为原来的倍;三角函数符号前乘以A,需将图象的横坐标不变,纵坐标变为原来的A倍.图象的平移变换的规律:左加右减.7、A【分析】解:由y=x2-4x+3=(x-2)2-1得;y≥-1;

则M={y|y=x2-4x+3;x∈R}=[-1,+∞);

由y=2x>0得,y=-2x<0,则N={y|y=-2x;x∈R}=(-∞,0);

∵M-N={x|x∈M且x∉N};∴M-N=[0,+∞),N-M=(-∞,-1);

∵M⊕N=(M-N)∪(N-M);

∴M⊕N=[0;+∞)∪(-∞,-1);

故选:A

由配方法和二次函数的性质求出M;由指数函数的性质求出N,由新定义和并集的运算求出(M-N);(N-M)和M⊕N

本题考查了集合新定义和并集的运算,以及二次函数、指数函数的性质,属于中档题.【解析】【答案】A二、填空题(共8题,共16分)8、略

【分析】

只有当α>0时幂函数的图象才能经过原点(0;0),若α<0,则幂函数的图象不过原点,故命题①错误;

②当a<0时,如a=-2,幂函数y=xa在(-∞;0)上是增函数,所以命题②错误;

③当a>1时,如a=4,由于在y=x4(-∞;0)上是减函数,故③不正确;

④函数y=x2是二次函数;也是幂函数幂函数,故命题④正确;

因此正确的命题有④.

故答案为:④.

【解析】【答案】根据幂函数的图象;单调性和定点对选项进行逐一验证即可.

9、略

【分析】

设球的半径为R,则可得球的体积为V球=

∵圆柱的底面直径和高都等于球的直径2R;

∴圆柱的体积为V圆柱=S底•2R=2πR3

又∵圆锥的底面直径和高都等于球的直径2R;

∴圆锥的体积为V圆锥=S底•2R=

因此,圆柱、圆锥、球的体积之比为2πR3:=3:1:2

故答案为:3:1:2

【解析】【答案】设球的半径为R;可分别由圆柱;圆锥和球体积公式,求出它们的体积关于R的式子,代入比例式,化简即可求出它们体积的比值.

10、略

【分析】

∵∴由得x2>6,∴x2-3>3;

∴f(x)的定义域为(3;+∞).

故答案为:(3;+∞).

【解析】【答案】可由确定x2>6,从而可求x2-3的范围;即为所求的f(x)的定义域.

11、略

【分析】【解析】略【解析】【答案】612、1【分析】【解答】解:令sin2x=得∵0<x<π;

∴则sinx﹣cosx>0;

∴sinx﹣cosx==

∴f(﹣)=f(sin2x)=5(sinx﹣cosx)﹣6=5×.

故答案为:1.

【分析】令sin2x=得进一步得到x的范围,求得sinx﹣cosx,则答案可求.13、略

【分析】解:∵r=2,α=

∴SS=r2α=22×=.

故答案为:.

设扇形的圆心角大小为α(rad),半径为r,则扇形的面积为S=r2α;由此得解.

本题主要考查了扇形的面积公式的应用,属于基础题.【解析】14、略

【分析】解:=()-(+)=-=

故答案为:.

利用向量加法的三角形法则即可求得答案.

本题考查向量加减混合运算及其几何意义,属基础题.【解析】15、略

【分析】解:∵882=420×2+42;420=42×10.

∴数420和882的最大公约数是42.

故答案为:42

利用“辗转相除法”即可得出.

本题考查了“辗转相除法”,属于基础题.【解析】42三、证明题(共9题,共18分)16、略

【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;

(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

则=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四点共圆;

∴∠CFD=∠CAD.

(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四点共圆;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.17、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.18、略

【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;

(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F为AC中点;

∴cosC==.

答:cosC的值是.

(3)BF过圆心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.19、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.20、略

【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;

(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

则=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四点共圆;

∴∠CFD=∠CAD.

(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四点共圆;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.21、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.22、略

【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;

则AC=AE;AB=5DE;

又∵G是AB的中点;

∴AG=ED.

∴ED2=AF•AE;

∴5ED2=AF•AE;

∴AB•ED=AF•AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.23、略

【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四边形GBFC是平行四边形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵过A;G的圆与BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四点共圆;

∴GA;GF=GC•GD;

即GA2=GC•GD.24、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.四、作图题(共3题,共12分)25、略

【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.

∵点A与点A′关于CD对称;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:铺设管道的最省费用为10000元.26、解:程序框图如下:

【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.27、解:如图所示:

【分析】【分析】由几何体是圆柱上面放一个圆锥,从正面,左面,上面看几何体分别得到的图形分别是长方形上边加一个三角形,长方形上边加一个三角形,圆加一点.五、计算题(共4题,共20分)28、略

【分析】【分析】求出=2,sin45°=,(3-π)0=1,=4,代入求出即可.【解析】【解答】解:原式=2-4×+1+4;

=2-2+1+4;

=5.29、略

【分析】【分析】列表列举出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论