2025年新世纪版高一数学上册月考试卷含答案_第1页
2025年新世纪版高一数学上册月考试卷含答案_第2页
2025年新世纪版高一数学上册月考试卷含答案_第3页
2025年新世纪版高一数学上册月考试卷含答案_第4页
2025年新世纪版高一数学上册月考试卷含答案_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年新世纪版高一数学上册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共5题,共10分)1、2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则a3+b4的值为()A.35B.43C.89D.972、若则3x+9x的值为()A.6B.3C.D.3、【题文】如图;某几何体的三视图都是等腰直角三角形,则几何体的体积是()

A.8B.7C.9D.64、若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么y=x2,值域为{1,9}的“同族函数”共有()A.7个B.8个C.9个D.10个5、直线kx鈭�y+1=3k

当k

变动时,所有直线都通过定点(

)

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)

评卷人得分二、填空题(共5题,共10分)6、圆心在x轴上,且过两点A(1,4),B(3,2)的圆的方程为____.7、已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为____.8、已知点M在z轴上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,则点M的坐标是____.9、已知等差数列{an}前17项和S17=51,则a7+a11=____.10、在鈻�ABC

中,若2cosAcosB=1鈭�cosC

则鈻�ABC

是______三角形.评卷人得分三、证明题(共9题,共18分)11、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.12、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.13、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.

(1)求证:E为的中点;

(2)若CF=3,DE•EF=,求EF的长.14、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.15、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:

(1)AD=AE

(2)PC•CE=PA•BE.16、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.17、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.18、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.19、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、作图题(共4题,共20分)20、作出下列函数图象:y=21、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.

22、请画出如图几何体的三视图.

23、绘制以下算法对应的程序框图:

第一步;输入变量x;

第二步,根据函数f(x)=

对变量y赋值;使y=f(x);

第三步,输出变量y的值.评卷人得分五、综合题(共4题,共16分)24、抛物线y=ax2+bx+c(a≠0)过点A(1;-3),B(3,-3),C(-1,5),顶点为M点.

(1)求该抛物线的解析式.

(2)试判断抛物线上是否存在一点P;使∠POM=90°.若不存在,说明理由;若存在,求出P点的坐标.

(3)试判断抛物线上是否存在一点K,使∠OMK=90°,若不存在,说明理由;若存在,求出K点的坐标.25、已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1;m),B(4,8)两点,与x轴交于原点及点C.

(1)求直线和抛物线解析式;

(2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由.26、如图,矩形ABCD中,AD<AB,P、Q分别为AD、BC的中点.N为DC上的一点,△AND沿直线AN对折点D恰好与PQ上的M点重合.若AD、AB分别为方程x2-6x+8=0的两根.

(1)求△AMN的外接圆的直径;

(2)四边形ADNM有内切圆吗?有则求出内切圆的面积,没有请说明理由.27、数学课上;老师提出:

如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(1,0),点B在x轴上,且在点A的右侧,AB=OA,过点A和B作x轴的垂线,分别交二次函数y=x2的图象于点C和D,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为xC、xD,点H的纵坐标为yH.

同学发现两个结论:

①S△CMD:S梯形ABMC=2:3②数值相等关系:xC•xD=-yH

(1)请你验证结论①和结论②成立;

(2)请你研究:如果上述框中的条件“A的坐标(1;0)”改为“A的坐标(t,0)(t>0)”,其他条件不变,结论①是否仍成立(请说明理由);

(3)进一步研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,又将条件“y=x2”改为“y=ax2(a>0)”,其他条件不变,那么xC、xD与yH有怎样的数值关系?(写出结果并说明理由)参考答案一、选择题(共5题,共10分)1、B【分析】【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【解析】【解答】解:由条件可得:;

解之得:.

所以a3+b4=27+16=43.

故选B.2、A【分析】试题分析:给方程两边同乘得即化为指数式得所以故选A.考点:对数的基本运算及指数式与对数式的互化【解析】【答案】A3、C【分析】【解析】由三视图可知,几何体是底面为等腰直角三角形,有一侧棱与底面垂直(垂足在非直角处)的三棱锥,其底面面积为×6×3=9,三棱锥的高为3,所以三棱锥的体积=×9×3=9.【解析】【答案】C4、C【分析】【解答】y=x2;值域为{1,9}的“同族函数”即定义域不同;

定义域中的数有﹣1;1,﹣3,3中选取;

定义域中含有两个元素的有2×2=4个;

定义域中含有三个元素的有4个;

定义域中含有四个元素的有1个;

总共有9种;

故选C.

【分析】由题意知,定义域中的数从﹣1,1,﹣3,3中选取;从而讨论求解.5、C【分析】解:由kx鈭�y+1=3k

得k(x鈭�3)=y鈭�1

对于任何k隆脢R

都成立,则{y鈭�1=0x鈭�3=0

解得x=3y=1

故直线经过定点(3,1)

故选C.

将直线的方程变形为k(x鈭�3)=y鈭�1

对于任何k隆脢R

都成立,从而有{y鈭�1=0x鈭�3=0

解出定点的坐标.

本题考查直线过定点问题,把直线方程变形为参数乘以一个因式再加上另一个因式等于0

的形式恒成立,故这两个因式都等于0

.【解析】C

二、填空题(共5题,共10分)6、略

【分析】

设圆心坐标为(m,0),半径为r,则圆的方程为(x-m)2+y2=r2;

∵圆经过两点A(1;4);B(3,2)

解得:m=-1,r2=20

∴圆的方程为(x+1)2+y2=20

故答案为:(x+1)2+y2=20

【解析】【答案】根据圆心在x轴上,设出圆心坐标(m,0)和半径r,写出圆的方程,再把A与B的坐标代入,即可求出m和r的值;从而写出圆的方程即可.

7、略

【分析】

设扇形的弧长为l,半径为r;

∵扇形圆心角的弧度数是4;

∴l=4r;

∵S扇=lr=2;

∴•4r2=2;

∴r2=1,r=1.

∴其周长c=l+2r=4r+2r=6r=6.

故答案为:6.

【解析】【答案】设扇形的弧长为l,半径为r,S扇=lr=2,l=4r,其周长c=l+2r可求.

8、略

【分析】

∵点M在z轴上;

∴设点M的坐标为(0;0,z)

又|MA|=|MB|;

由空间两点间的距离公式得:

=

解得:z=-3.

故点M的坐标是(0;0,-3).

故答案为:(0;0,-3).

【解析】【答案】欲求点M的坐标;根据点M在z轴上的特点,可设点M的坐标为(0,0,z),结合空间两点间的距离公式利用题中条件:“|MA|=|MB|,”列关于z的方程,最后解此方程即可.

9、6【分析】【解答】解:∵S17==51

∴2a1+16d=6

∴a7+a11=a1+6d+a1+10d=2a1+16d=6

故答案为6

【分析】先根据S17=51求出2a1+16d的值,再把2a1+16d代入a7+a11即可得到答案.10、略

【分析】解:隆脽2cosAcosB=1鈭�cosC=1+cos(A+B)

隆脿2cosAcosB=cosAcosB鈭�sinAsinB+1

隆脿cosAcosB+sinAsinB=1

隆脿cos(A鈭�B)=1

隆脿A鈭�B=0

即A=B

隆脿鈻�ABC

一定是等腰三角形。

故答案是:等腰.

由三角函数公式化简可得cos(A鈭�B)=1

结合三角形角的范围可得.

本题考查两角和与差的三角函数,涉及三角形形状的判定,属基础题.【解析】等腰三、证明题(共9题,共18分)11、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.12、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.13、略

【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE

OA=OE=>∠OAE=∠OEA

DE切圆O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

⇒OE∥AD

=>E为的中点.

(2)解:连CE;则∠AEC=90°,设圆O的半径为x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圆O于E=>△FCE∽△FEA

∴,

即DE•EF=AD•CF

DE•EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC•FA=3x(3+2)=15

∴EF=14、略

【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;

则AC=AE;AB=5DE;

又∵G是AB的中点;

∴AG=ED.

∴ED2=AF•AE;

∴5ED2=AF•AE;

∴AB•ED=AF•AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.15、略

【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;

即可得到结论;

(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,

∵PC是⊙O的切线;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB为⊙O的直径;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC•CE=PA•BE.16、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.17、略

【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;

(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F为AC中点;

∴cosC==.

答:cosC的值是.

(3)BF过圆心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.18、略

【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四边形GBFC是平行四边形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵过A;G的圆与BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四点共圆;

∴GA;GF=GC•GD;

即GA2=GC•GD.19、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.四、作图题(共4题,共20分)20、【解答】幂函数y={#mathml#}x32

{#/mathml#}的定义域是[0;+∞),图象在第一象限,过原点且单调递增,如图所示;

【分析】【分析】根据幂函数的图象与性质,分别画出题目中的函数图象即可.21、解:程序框图如下:

【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.22、解:如图所示:

【分析】【分析】由几何体是圆柱上面放一个圆锥,从正面,左面,上面看几何体分别得到的图形分别是长方形上边加一个三角形,长方形上边加一个三角形,圆加一点.23、解:程序框图如下:

【分析】【分析】该函数是分段函数,当x取不同范围内的值时,函数解析式不同,因此当给出一个自变量x的值时,必须先判断x的范围,然后确定利用哪一段的解析式求函数值,因为函数解析式分了三段,所以判断框需要两个,即进行两次判断,于是,即可画出相应的程序框图.五、综合题(共4题,共16分)24、略

【分析】【分析】(1)将A(1,-3),B(3,-3),C(-1,5)三点坐标代入y=ax2+bx+c中,列方程组求a、b;c的值;得出抛物线解析式;

(2)抛物线上存在一点P,使∠POM=90˚.设(a,a2-4a);过P点作PE⊥y轴,垂足为E;过M点作MF⊥y轴,垂足为F,利用互余关系证明Rt△OEP∽Rt△MFO,利用相似比求a即可;

(3)抛物线上必存在一点K,使∠OMK=90˚.过顶点M作MN⊥OM,交y轴于点N,在Rt△OMN中,利用互余关系证明△OFM∽△MFN,利用相似比求N点坐标,再求直线MN解析式,将直线MN解析式与抛物线解析式联立,可求K点坐标.【解析】【解答】解:(1)根据题意,得,解得;

∴抛物线的解析式为y=x2-4x;

(2)抛物线上存在一点P;使∠POM=90˚.

x=-=-=2,y===-4;

∴顶点M的坐标为(2;-4);

设抛物线上存在一点P,满足OP⊥OM,其坐标为(a,a2-4a);

过P点作PE⊥y轴;垂足为E;过M点作MF⊥y轴,垂足为F.

则∠POE+∠MOF=90˚;∠POE+∠EPO=90˚.

∴∠EPO=∠FOM.

∵∠OEP=∠MFO=90˚;

∴Rt△OEP∽Rt△MFO.

∴OE:MF=EP:OF.

即(a2-4a):2=a:4;

解得a1=0(舍去),a2=;

∴P点的坐标为(,);

(3)过顶点M作MN⊥OM;交y轴于点N.则∠FMN+∠OMF=90˚.

∵∠MOF+∠OMF=90˚;

∴∠MOF=∠FMN.

又∵∠OFM=∠MFN=90˚;

∴△OFM∽△MFN.

∴OF:MF=MF:FN.即4:2=2:FN.∴FN=1.

∴点N的坐标为(0;-5).

设过点M,N的直线的解析式为y=kx+b,则;

解得,∴直线的解析式为y=x-5;

联立得x2-x+5=0,解得x1=2,x2=;

∴直线MN与抛物线有两个交点(其中一点为顶点M).

另一个交点K的坐标为(,-);

∴抛物线上必存在一点K,使∠OMK=90˚.坐标为(,-).25、略

【分析】【分析】(1)由直线y=kx+4过A(1,m),B(4,8)两点,列方程组求k、m的值,再把O、A、B三点坐标代入抛物线解析式求a、b;c的值;

(2)存在.根据O、A、B三点坐标求△OAB的面积,再由S△OCD=2S△OAB=12,求D点纵坐标,代入抛物线解析式求D点纵坐标.【解析】【解答】解:(1)∵直线y=kx+4过A(1;m),B(4,8)两点;

∴,解得;∴y=x+4;

把O、A、B三点坐标代入抛物线解析式,得,;

∴y=-x2+6x;

(2)存在.设D点纵坐标为h(h>0);

由O(0,0),A(1,5),B(4,8),可知S△OAB=6;

∴S△OCD=2S△OAB=12,×6×h=12;解得h=4;

由-x2+6x=4,得x=3±;

∴D(3+,4)或(3-,4).26、略

【分析】【分析】(1)首先解方程求出AD;AB;利用折叠前后图形不变得出AM=AD=2,以及得出∠NAM=30°,进而求出AN,即是Rt△AMN的外接圆直径;

(2)首先得出I所在位置,得出四边形IEDF为正方形,再利用三角形相似求出内切圆的半径.【解析】【解答】解:(1)x2-6x+8=0得x1=2,x2=4;

又AD;AB为方程的两根;AD<AB;

∴AD=2;AB=4;

∴AM=AD=2;AP=1;

在Rt△AMP中;∠PAM=60°;

∴∠PMA=30°;

∴∠NAM=30°;

在Rt△AMN中,AN==,即Rt△AMN的外接圆直径为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论