2024年《完全平方公式》教案_第1页
2024年《完全平方公式》教案_第2页
2024年《完全平方公式》教案_第3页
2024年《完全平方公式》教案_第4页
2024年《完全平方公式》教案_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年《完全平方公式》教案

《完全平方公式》教案1

一、教学目标

Q)知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。

(2)过程与方法目标;学生探究完全平方公式,体会数形结合。

二、教学重点;公式结构及运用。

三、教学难点;公式中字母AB的含义理解与公式正确运用。

四、教具;自制长方形、正方形卡片

五、教学过程;

教师活动

学生活动

1、L创设情景,提出问题,引入课题

(1)想一想

一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人就

会每个孩子几块糖。

(1)第一天,a个男孩去看老人,老人共给他们几块糖?

(2)第二天,个女孩子去看望老人,老人共给他们多少块糖?

(3)第三天,()个孩子一起去看望老人,老人共给他们多少块糖?

(4)第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)

1、1、学生四人一组讨论。

填空:

(1)第一天给孩子块糖。

(2)第二天给孩子块糖。

(3)第三天给孩子块糖。

男孩子第三天多得块糖

女孩第三天多得块糖。

教师活动

学生活动

(2)做一做、请同学拼图

a

教师巡视指导学生拼图

2、2、教师提问:

(1)、大正方形边长?(2)每一块卡片的面积是多少?(3)用不同形式表示正方形总面积,比较发现

什么?

3、3、想一想

(l)(a+b)用多项式乘法法则说明

⑵(a-b)

4、请同学们自己叙述上面的'等式

5、说一说,ab能表示什么?

(□+。)口+2口。+。

6、算一算

⑴(2X-3)(2)(4X+5Y)

请同学们分清ab

7、练一练

(1)(2X-3Y)(2)(2XY-3X)

8、试T(a+b+c)

作业P1351、2

学生2人一组拼图交流

2、学生观察思考

(1)大正方形边长?

(2)四块卡片的面积分别是

(3)大正方形的总面积是多少?

3、(1)学生运用多项式乘法法则推导

(a+b)=a+2ab+b说出每一步运算理由

(2)学生自己探究交流

4、学生用语言叙述公式

5、师生共同a、b对应项教师书写

6、学生独立完成练一练展示结果

7、学生四人一组讨论交流

8、有兴趣的同学可以探

《完全平方公式》教案2

教学目标

1、使学生理解完全平方公式的意义,弄清完全平方公式的形式和特点;使学生知道把完全平

方公式反过来就可以得到相应的因式分解。

2、掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式(直

接用公式不超过两次)

教学方法:对比发现法课型新授课教具投影仪

教师活动:学生活动

复习巩固:上节课我们学习了运用平方差公式分解因式,请同学们先阅读课本87-88页,

看看你能有什么发现?

新课讲解:

(投影)我们把形如a2+2ab+b2与a2-2ab+b2叫做完全平方式,和平方差公式一样,我们

也可以利用它把一些多项式因式分解。例如:

a2+8a+16=a2+2x4a+42=(a+4)2

a2-8a+16=a2-2x4a+42=(a-4)2

(要强调注意符号)

首先我们来试一试:(投影:牛刀小试)

L把下列各式分解因式:

(l)x2+8x+16;;(2)25a4+10a2+l

(3)(m+n)2-4(m+n)+4

(教师强调步骤的重要性,注意发现学生易错点,及时纠正)

2.把81x4-72x2y2+16y4分解因式

(本题用了两次乘法公式,难期大,教师要鼓励学生大胆尝试,敢于创新)

将乘法公式反过来就得到多项式因式分解的.公式。运用这些公式把一个多项式分解因式的

方法叫做运用公式法。

练习:第88页练一练第1、2题

《完全平方公式》教案3

本节课教学内容分析

《完全平方公式》是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,

而且公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端是从一般到特殊的认知

规律的典型范例.通过对公式的学习来简化某些整式的运算,为以后的因式分解、分式的化简、

二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础.因此,完全平方公式在初

中阶段的教学中具有很重要地位。

依据课程标准

本节课对应的课标要求是让学生了解公式的几何背景,能推导验证公式的准确性,并会利用

公式进行简单计算。经历从"数"与"形"两个角度解决问题的过程,体会数形结合的思想。经

历探究解决简单问题的过程,提高学生分析问题和解决问题的能力,发展应用意识。

学习者特征分析

八年级的学生年龄基本都在十四岁左右,正处于活泼好动的青春期中期。此阶段的学生,个

人意识增强,渴望归属感和被认同。如果课堂气氛沉闷单调,他们也会较快的感到疲劳烦躁。针

对学生的心智特征及本课实际我以"引"为主主要采用启发引导合作交流的方式展开教学,

引导学生主动参与到教学过程中来建构知识。

教学策略阐述

1、问题引入策略:通过提出问题,激发学生学习的兴趣和求知欲,创设宽松活泼的课堂教

学气氛,维持学生学习的动机。

2、自主学习策略:学生通过自己观察、思考,促进思维的深层次加工和提高课堂参与度。

3、引导探究策略:学生通过小组合作,推导验证公式,充分发挥学生的主体作用。

4、类比启发策略:在完成教学要求的基础上,通过解决与生活实际紧密联系的问题情境,

巩固提高学生运用公式解决生活问题的能力。

本节课教学目标

知识和技能:

1、经历探索完全平方公式的过程,进一步发展符号感和推理能力;

2、会推导完全平方公式,并能运用公式进行简单的计算;

3、了解完全平方公式的几何背景。

过程和方法:

1、在学习的过程中使学生体会数形结合的思想;

2、经历公式的验证,进一步发展符号感和推理能力,培养学生数学建模的思想。情感态度

和价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立

自信心。

教学重点和难点

项目内容解决措施

教学重点完全平方公式的结构特点及公式的直接运用在教学中逐步设置疑问,引导学生动手、

动脑、动口,积极参与知识全过程。由易到难安排例题、练习,符合八年级学生的认知结构特点。

课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。师生互动、讲练结合,从而突出教

学重点、突破教学难点.

教学难点完全平方公式的应用以及对公式中字母a、b的广泛含义的理解与正确应用

教学过程设计教学过程设计教学过程设计教学过程设计教学内容师生互动设计意图

活动一:问题感知,情景切入有一种记忆游戏,游戏规则是:每次只能翻一张底牌,记忆并

找出相同内容的底牌,连续点出相同内容的底牌即可消失,直至底牌全部消失就算过关。下图是

每个关卡的底牌布局,观察并回答下列问题:第a个关卡有xx张底牌;第b个关卡有xx张底

牌;第(a+b)个关卡有xxxxx张底牌;第a个关卡的底牌数与第b个关卡的底牌数之和与第

(a+b)个关卡的底牌数哪个多?多多少?

师:班班通展示问题,层层设问,引导学生解决实际问题,并关注学生情况。

生:在教师引导下思考并解决问题利用生活情景引入,消除学生的陌生感,激发学生的学习

兴趣,体会数学来源于生活。

活动二:深入问题,合作探究2、计算下列各式,你能发现什么规律

(1)(p+1)=(p+l)(p+l)=xxxx;

(2)(m+2)=xxxx;

(3)(p-1)=(p-l)(p-l)=xxx;

(4)(m-2)=xxxxx.

(5)(a+b)=xxxxx;(a-b)=xxxxxxx.在教师的引导下,学生独立完成解题,观察并找出式

子的规律让学生体会到完全平方公式是乘法公式的特例,因应用广泛,计算简捷,故作为公式学

习。

3、猜想?你是怎样推导的呢?还有其他证明方法吗?

生用代数的方法验证公式的准确性继续让学生体会到完全平方公式是乘法公式的特例化未

学为已知,体会数学中的化归思想。

活动三:结构分析,建构新知4、完全平方公式:

5、分析公式的结构特征:左边:两数和的平方。右边:是一个二次三项式,其中两项为两

数的平方和;另一项是两数积的2倍,且与左边乘式中间的符号相同。用文字语言叙述:两数

和的平方,等于它们的平方和加上它们积的2倍。简记:首平方,尾平方,积的'2倍中间放,

积的符号看前方。几何解释:完全平方和公式完全平方差公式

师:引导学生观察公式的左右边,进一步挖掘公式的结构特征教师在学生的发言过程中进行

逐步归纳。

生:用几何的方法验证公式的准确性学生自主学习养成独立思考、分析问题、解决问题的习

惯以形助数,使学生体会数学中的数学结合思想

活动四:范例分析,深化新知例1、用完全平方公式计算下列各题,并指出谁可以看作公式

中的a、b.

(2)仔细阅读例1,注意以下问题:

①每道小题分别选用了哪个完全平方公式,为什么?并能指出谁可以看作公式中的

②解题步骤.师:例题讲解分析解题思路,强调注意事项,规范解题格式生:及时小结让学

生学会优化选择

活动五:尝试练习,拓展提升

7、下面各式的计算结果是否正确?如果不正确,应当怎样改正(1)(2)(3)(4)

8、活用公式:

9、你能用几种方法运用完全平方公式计算(1)(2)例2、运用完全平方公式计算:(1)102(2)

99师:抢答题,看谁的反应快生:在抢答后小结套用公式的注意事项师:引导学生一题多解并

关注学生的书写的规范性。

生:灵活运用公式解题及时练习巩固应用在例题、练习的基础上变式,加深学生对所学知识

的理解渗透一题多解的数学思想,发散学生数学思维。多层面多方位考察完全平方公式,加深理

解。

活动六:课堂小结,归纳提高不节课你有哪些收获完全平方公式:记忆口诀:首平方,尾平

方,积的2倍中间放,积的符号看前方。注意:

a、b可以表示数,单项式或多项式。

2、解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化

选择.

3、数学思想:体会数学中的一题多解,数形结合思想,化归思想,整体代入思想.教师引导

学生总结回顾学习内容,帮助学生学习归纳反思。并关注不同层次学生对本节知识的理解、掌握

程度。学生自己总结,互相补充。通过学生的自评与反思,有助于学生养成整理知识的习惯,有

助于学生在刚刚理解了新知识的基部上,及时把知识系统化、条理化。同时又有利于及时调整教

学策略,为下节课的教学打下伏笔。

活动七:布置作业,自我评价

1、必做题:课本第112页

2.3(1)(3)2、选做题:课本第112页

3(2)(4)、4、7教师精选习题,布置作业学生课外独立完成作业。课后作业是对课堂所学

知识的巩固,提高、延续和补充。

板书设计

§14.2.2完全平方公式公式口诀解题技巧例1.略例2.略练习、草稿

教学预测、反思

预测:

(1)这节课倡导了以学生为主,教师为辅的思想,留足了一定的时间让学生去发现探索、

以及做练习,学生学习效果明显。

(2)采用了多媒体辅助教学,以较清晰的手段呈现了学生整个学习过程,让课堂更加直观

明了,同时容量也增大了。

(3)完全平方公式的直接应用掌握还可以,公式的灵活应用和妙用大部分学生还没有掌握,

课下加强联系,多变幻题型,突破难关。反思:好的方面:不足方面:

《完全平方公式》教案4

学习目标:

1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。

2、会推导完全平方公式,了解公式的几何背景,会用公式计算。

3、数形结合的数学思想和方法。

学习重点:会推导完全平方公式,并能运用公式进行简单的计算。

学习难点:掌握完全平方公式的结构特征,理解公式中a.b的广泛含义。

学习过程:

一、学习准备

1、利用多项式乘以多项式计算:(a+b)2(a-b)2

2、这两个特殊形式的,多项式乘法结果称为完全平方公式。

尝试用自己的语言叙述完全平方公式:

3、完全平方公式的几何意义:阅读课本64页,完成填空。

4、完全平方公式的结构特征:

(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

左边是形式,右边有三项,其中两项是形式,另一项是

注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一

公式,可用符号表示为:(口±4)=口2±2型+22

5、两个完全平方公式的转化:

(a・b)2=2=()2+2()+()2=

二、合作探究

1、利用乘法公式计算:

(1)(3a+2b)2⑵(-4x2-l)2

分析:要分清题目中哪个式子相当于公式中的a,哪个式子相当于公式中的b

2、利用乘法公式计算:

⑴992(2)()2

分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化()2,()2可

以转化为()2

3、利用完全平方公式计算:

(1)(a+b+c)2(2)(a-b)3

三、学习

对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?

四、自我测试

1、下列计算是否正确,若不正确,清订正;

(1)(-l+3a)2=9a2-6a+l

(2)(3x2-)2=9x4-

(3)(xy+4)2=x2y2+16

(4)(a2b-2)2=a2b2-2a2b+4

2、利用乘法公式计算:

(1)(3x+l)2(2)(a-3b)2

(3)(-2x+)2(4)(-3m-4n)2

3、利用乘法公式计算:

⑴9992⑵(100.5)2

4、先化简,再求值;

(m-3n)2-(m+3n)2+2,其中m=2,n=3

五、思维拓展

1、如果x2-kx+81是一个完全平方公式,则k的值是

2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项

式可以是

3、已知(x+y)2=9,(x-y)2=5,求xy的值

4、x+y=4,x-y=10,那么xy二

5、已知x-=4,则x2+=

《完全平方公式》教案5

一、教材分析:

(一)教材的地位与作用

本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了

代数式的概念、整式的加减法、鬲的运算和整式的乘法后进行学习的,其地位和作用主要体现在

以下几方面:

(1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法

公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的

较为特殊的算式的一种归纳、总结:另一方面,乘法公式的推导是初中代数中运用推理方法进行

代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较

大好处。

(2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更

是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力

的功能。

(3)公式的发现与验证给学生体验规律发现的基本方法和基本过彳野是供了很好模式。

(二)教学目标的确定

在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能

力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标

准》的要求,确定本节课的教学目标如下:

1、知识目标:

理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

2、能力目标:

渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、

解决问题的能力和创新能力。

3、情感目标:

培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。

(三)教学重点与难点

完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于

计算的一种重要依据,因此,本节教学的重点与难点如下:

本节的重点是体会公式的发现和推导过程理解公式的本质,并会运用公式进行简单的计算。

本节的难点是从广泛意义上理解公式中的字母含义判明要计算的代数式是哪两数的和(差)

的平方。

二、教学方法与手段

(一)教学方法:

针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用

自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。同时

考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主

动参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和

因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊

―一般一特殊,将所学的知识用于实践中。

采用小组讨论,大组竞赛等多种形式激发学习兴趣。

(二)教学手段:

利用投景乡仪辅助教学,突破教学难点,公式的推导变成生动、形象、直观,提高教学效率。

(三)学法指导:

在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、

动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

三、教材处理

根据本节内容特点,本着循序渐进的原则,我将以"边长为(a+b)的正方形面积是多少?”

这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数

差的'平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的

方法进行,再通过分层次练习,加以巩固。

四、教学程序

教学过程

设计意图

一、创设情境,引出课题

如图,有一个边长为a米的正方形广场,则这个广场的面积是多少?

a

若在这个广场的相邻两边铺一条宽为10米的道路,则面积是多少?

a10

引导学生利用图形分割求面积。

另一方面:正方形

1010a102面积为(a+10)2,所以:

(a+10)2=a2+20a+102

aa210a

a10

babb2把10替换为b,

(a+b)2=a2+2ab+b2

aa2ab提出课题

ab

通过较为简单的几何图形面积计算和较熟悉的整式乖法计算。引入本节学习内容

(a+b)-(a+b)

(根据初一学生年龄特点,采用图形变化来激发学生学习兴趣)

问题是知识、能力的生长点,通过富有实际意义的问题能激活学生原有认知,促使学生主动

地进行探索和思考。

对公式(a+b)2=a2+2ab+b2的形式进行初知识,接触

二、交流对话,探求新知

1、推导两数和的完全平方公式

计算(a+b)2

解:(a+b)2=(a+b)(a+b)=a24-ab+ab+b2=a2+2ab+b2

2、理解公式特征

①算式:两数和的平方

②积:两个数的平方和加上这两个数积的2倍

3、语言叙述

(a+b)2=a2+2ab+b2用语言如何叙述

4、公式(a-b)2=a2-2ab+b2教学

①利用多项式乘法(a-b)2=(a-b)(a-b)

②利用换元思想(a-b)2=[a+(-b)]2

③利用图形

b

a

(a-b)b

a

5、学生总结、归纳:

(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

这两个公式叫做完全平方公式,两数和(或差)的平方,等于这两数的平方和,加上(或减

去)这两数积的2倍。

6、公式中的字母含义的理解。(学生回答)

(x+2y)2是哪两个数的和的平方?

(x+2y)2=()2+2()()+()2

(2x-5y)2是哪两个数的差的平方?

(2x+5y)2=()2+2()()+()2

变式(2x-5y)2可以看成是哪两个数的和的平方?

利用多项式乘法推导公式,使学生了解公式的来源以及理解乘法公式的本质。

组织学生小组讨论,使学生明瑞公式特征,加深对公式表象的理解。

由学生对公式

(a+b)2=a2+2ab+b2进行口头语言叙述。

(1)说明:教师提供三种模式,由学生选择一种去解决。培养学生学习的主动性,开阔学生

的思路。(2)同时对渗透数形结合思想、换元思想,也是分散、分步突破本节的难点的第一个层

次;(3)体会辩证统一的唯物主义观点;(4)正确引导学生学习时知识的正迁移。

使学生学会对公式的正确表述,有利于学生正确用于计算之中,此时也可以让学生对两个公

式特点进行讨论归纳,适当总结一定的口诀:"头平方,尾平方,两倍的乘积中间放。"

加深学生对公式中的字母含义的理解,明确字母意义的广泛性

三、整理新知形成结构

1、完全平方公式并分析公式左右的特征。

2、换元的基本想法

四、应用新知,体验成功

1、例1教学:用完全平方公式计算

(l)(a+3)2(2)(y-)2(3)(-2x+t)2(4)(-3x-4y)2

学生直接运用公式计算教师板演,讲评时边口述理由,针对第(4)题(-3x-4y)2可以看成是-3x

与4y差的平方,也可以看成・3x与-4y和的平方

提出以下问题:

(1)可否看成两数和的平方,运用两数和的平方公式来计算?

(2)可否看成两数差的平方,运用两数差的平方公式来计算?

(3)能不能进行符号转化?如(-3x-4y)2=(3x+4y)2

2、公式巩固

(1)同桌同学互相编一道用完全平方公式计算题目,然后解答。

(2)下列各式的计算,错在哪里?应怎样改正?

®(a+b)2=a2+b2(5)(a-b)2=a2-b2

③(a-2b)2;a2+2ab+2b2

3、练习:运用完全平方公式计算:(学生板演)

①(a+5)2②(3+x)2③(y-2)2®(7-y)2

⑤(2x+3y)2⑥(-2x-3y)2⑦(3-)2⑧(--)2

4、例2,运用完全平方公式计算:(1)1012(2)982

5、练习:运用完全平方公式计算

(1)912(2)7982(3)(10)2

6、讨论:Q-2x)(-l-2x),(x・2y)(-2y+l)如何计算

五、公式拓展,鼓励探究

1、a2+b2=(a+b)2-a2+b2+=(a+b)2

a2+b2+=(a-b)2

2、(a+b)2-(a-b)2=3、(a+b+c)2=

4、提出思考题:(a+b)3=?(a+b)4=?

5、已知求的值。

6、已知:,求,的值。

6.已知,求x和y的值。

(1)遵循及时巩固原则。(2)针对初一学生注意力不能持久的特点。⑶形成知识网络,有利于

学生进一步学习公式的运用

Q)直接运用公式进行计算。(2;进一步帮助学生掌握换元法。(3)进行符号转化的变换,加深

学生对公式理解的深度,也为进一步学习其它知识打好基础。

对这几个式子的辨析目的在于防止学生对以前学过的如(ab)2=a2b2的公式的负迁移作用

讲练结合

(1)合作学习,四人小组讨论(教师逐步引导到运用完全平方公式计算)学生讲自己解题的

想法和步骤,培养语言表达能力。⑵体会公式实际运用作用,增加学习兴趣

进一步辨析完全平方公式与平方差公式的区别

公式变形利于各种计算

提出一个问题,引导学生用学习研究完全平方公式的方法去研究公式的拓展变形问题。如:

三项式的平方,两项式的立方、四次方等,培养学生的严谨的治学态度和钻研精神。

六、小结提高,知识升华

1、两个公式(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

2、两种推导方法:多项式乘法导出;图形面积导出

3、换元法与转化

七、作业布置,分层落实

1、阅读教材6.17内容

2、见省编作业本6.17

3、对(a+b)2,(a+b)3……的展开式从项数、系数方面进行研究

由学生自己小结本节所学知识、方法等。教师根据学生回答情况作出补充。

(1)作业1主要以培养学习良好的学习习惯为目的。(2)结合学生实际情况,贯彻面向全体学

生,因材施教原则。作业2要求全体学都能完成。作业3为选做题,部分学有余力的学生可选

做。在减轻学生的课业负担同时,注重人本思想,以学生的能力发展为重。也能满足不同层次

学生的不同要求。

附:板书设计与时间大致安排

屏幕

课题

公式……例题

学生板演

本课时的时间大致安排:

引入课题3分钟左右,探求新知15分钟左右,整理新知2分钟左右,应用新知15分钟左

右,公式拓展5分钟左右,小结作业布置约5分钟。

设计说明

本节课的教学设计注重体现以教师为主导、学生为主体,以发展学生为本的思想。遵循初一

学生的心理特点(形象思维大于抽象思维)和认知规律(从特殊到一般).结合学生实际学习情

况(已较熟练掌握多项式乘法,并且本节之前也已经学习了平方差公式)进行本课设计的。下面

就设计作几点简单说明:

1、完全平方公式的本质是多项式乘法,它的推导方法与平方差公雌导方法是一样的,根

据乘方的意义与多项式乘法法则就可以推导出完全平方公式。因此在两数和的平方公式推导中,

采取先由学生自己计算(a+b)2,然后教师点题的方式,再加上引课时已经由几何图形面积的计

算得出的结论(a+b)2=a2+2ab+b2,学生是容易接受的。在两数差的平方公式推导中,更进一

步,由学生自主选择一种模式解决、验证,增加了数学课堂的开放性。

2、充分发挥学生自主学习、探究的能力。从引入时图形变换的教师启发引导,到公式验证、

推导时的学生自主探索,再到学生与学生之间的合作交流学习,都突出了学生是探索性学习活动

的主体。在公式拓展中还提出了思考题(a+b)3=?(a+b)4=?......(a+b+c)2=?培养学生严谨的

治学态度和钻研探索的精神。同时让学生明确本节课不仅要学会完全平方公式,更加要学会完全

平方公式的推导方法,即授学生以渔,让学生学会学习。

3、在练习设计与作业布置中都体现了分层次教学的要求,让不同层次的学生都能主动的参

与并都能得到充分的发展。同时也遵循了面向全体与因材施教相结合的教学原则。

4、充分挖掘本课时教材中的隐含的各种数学思想,在教学中渗透如建模思想、数形结合思

想、换元思想、化归思想,注重培养学生的发现问题、解决问题的能力、求简意识、应用意识、

创新能力等各方面能力。

5、公式(a・b)2=a2・2ab+b2可以作为(a+b)2=a2+2ab+b2的f应用,这样两个公式便

统一为一个公式,这样做有助于学生的记忆和理解,但作为应用,实践表明还是把它们分开来用

的好。因此,教学中在公式(a-b)2=a2-2ab+b2的推导过程就有意识的安排与

(a+b)2=a2-2ab+b2统一,但又它与(a+b)2=a2+2ab+b2同等的对待。最后在小结时,对于

两者的联系再加以说明,让学生领会到数学中的辩证统一思想。

《完全平方公式》教案6

教学过程

一、议一议

探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由1.xyx,(8m

n)(2mn),(abc)(3ab).师生共同分析:此题是做除法运算,可以从两方面思考根据除法是乘法

的逆运算,将除法问题转化为乘法问题去解决,即()x二xy油单项式乘以单项式法则可得(xy)x

二xy,因此,xyx二xy.另外,根据同底数幕的除法法则,由约分也可得=xy.学生动笔:写出

(2)(3)题的结果.教师板书:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abe师以上运算是单

项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师

引导学生从系数、同底数幕、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,

其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幕分别相除后,

作为商的因式;对于只在被除式里含有的.字母,则连同它的指数作为商的一个因式.

二、做T故

巩固新知例1计算1.(-xy)(3xy)2.(10abc)(5abc)3.(2xy)(-7xy)(14xy)4,(2a+b)

(2a+b)学生活动在练习本上计算教师引导学生按法则进行运算,首先确定它们的系数,把系

数的商作为商的系数,其次确定相同的字母,在被除式中出现的字母作为商中可能含有的字母,

相同字母的指数之差作为商式中对应字母的指数,只在被除式中含有的字母指数不变,最后化简.

第Q)(2)题对照法则进行,第(3)题要按运算顺序进行.第(4)题先把(2a+b)看作一个整体(一个字

母)相除,后用完全平方公式计算.教师板书如下:解:L(-xy)(3xy)2.(10abc)(5abc)=(-3)xy

=(105)abc=-y=2abc3.(2xy)(-7xy)(14xy)4.(2a+b)(2a+b)=8xy(-7xy)(14xy)

=(2a+b)=-56xy(14xy)=(2a+b)=-4xy=4a+4ab+b

三、随堂练习

P401学生活动:让四名同学到黑板板演,其余同学在练习本上计算,同伴可交流,互相订

正.教师巡回检杳,对存在问题及时更正.待四名板演同学完成后,师生共同订正.

四、小结

本节课主要学习了单项式除以单项式的运算.在运用法则计算时应注意以下几点:

L系数相除与同底数幕相除的区别;

2.符号问题;

3.指数相同的同底数幕相除商为1而不是0;4.在混合运算中,要注意运算的顺序.五、作业

课本习题1.15.P411、2.3

《完全平方公式》教案7

完全平方公式(教案)贾村中学聂盼山

一、教学目标

(1)(1)知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算,数学教

案-完全平方公式(教案)。

(2)(2)过程与方法目标;学生探究完全平方公式,体会数形结合。

二、教学重点;公式结构及运用。

三、教学难点;公式中字母AB的含义理解与公式正确运用。

四、教具;自制长方形、正方形卡片

五、教学过程;

教师活动

学生活动

1、1、创设情景,提出问题,引入课题

(1)(1)想一想

一位老人很喜欢孩子,每当孩子到候做客时,老人都拿出糖招待他们,来了几个孩子老人

就会每个孩子几块糖。

(1)(1)第一天,a个男孩去看老人,老人共给他们几块糖?

(2)(2)第二天,个女孩子去看望老人,老人共给他们多少块糖?

(3)(3)第三天,()个孩子一起去看望老人,老人共给他们多少块糖?

(4)(4)第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)

1、1、学生四人一组讨论。

填空:

(1)第一天给孩子块糖。

(2)第二天给孩子块糖。

(3)第三天给孩子块糖。

男孩子第三天多得块糖

女孩第三天多得块糖。

教师活动

学生活动

(2)(2)做一做、请同学拼图

a

教师巡视指导学生拼图

2、2、教师提问:

(1)、大正方形边长?(2)每一块卡片的面积是多少?(3)用不同形式表示正方形总面

积,比较发现什么?

3、3、想T®

(1)(a+b)用多项式乘法法则说明

(2)(a-b)

4、请同学们自己叙述上面的等式

5、说一说,ab能表示什么?

(□+o)口+2口。+。

6、算一算

(1)(2X-3)(2)(4X+5Y)

请同学们分清ab

7、练一练

(1)(2X-3Y)(2)(2XY-3X)

8、试一H(a+b+c)

作业:P1351、2

学生2人一组拼图交流

2、学生观察思考

(1)(1)大正方形边长?

(2)(2)四块卡片的面积分别是

(3)(3)大正方形的总面积是多少?

3、(1)学生运用多项式乘法法则推导

(a+b)=a+2ab+b说出每一步运算理由

(2)学生自己探究交流

4、学生用语言叙述公式

5、师生共同a、b对应项教师书写

6、学生独立完成练一练展示结果

7、学生四人一组讨论交流

8、有兴趣的同学可以探

完全平方公式(教案)贾村中学聂盼山

一、教学目标

(1)(1)知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。

(2)(2)过程与方法目标;学生探究完全平方公式,体会数形结合。

二、教学重点;公式结构及运用。

三、教学难点;公式中字母AB的含义理解与公式正确运用。

四、教具;自制长方形、正方形卡片

五、教学过程;

教师活动

学生活动

1、1、创设情景,提出问题,引入课题

(1)(1)想一想

T立老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人

就会每个孩子几块糖。

(1)(1)第一天,a个男孩去看老人,老人共给他们几块糖?

(2)(2)第二天,个女孩子去看望老人,老人共给他们多少块糖?

(3)(3)第三天,()个孩子一起去看望老人,老人共给他仅多少块糖?

(4)(4)第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)

1、1、学生四人一组讨论,初中数学教案《数学教案-完全平方公式(教案)》.

填空:

(1)第一天给孩子块糖。

(2)第二天给孩子块糖。

(3)第三天给孩子块糖。

男孩子第三天多得块糖

女孩第三天多得块糖。

教师活动

学生活动

(2)(2)做一做、请同学拼图

a

教师巡视指导学生拼图

2、2、教师提问:

(1)、大正方形边长?(2)每一块卡片的面积是多少?(3)用不同形式表示正方形总面

积,比较发现什么?

3、3、想T

(l)(a+b)用多项式乘法法则说明

(2)(a-b)

4、请同学们自己叙述上面的等式

5、说一说,ab能表示什么?

(□+o)□+2ao+o

6、算一算

(1)(2X-3)(2)(4X+5Y)

请同学们分清ab

7、练一练

(1)(2X-3Y)(2)(2XY-3X)

8、试一试(a+b+c)

作业:P1351、2

学生2人一组拼图交流

2、学生观察思考

(1)(1)大正方形边长?

(2)(2)四块卡片的'面积分别是

(3)(3)大正方形的总面积是多少?

3、(1)学生运用多项式乘法法则推导

(a+b)=a+2ab+b说出每^一步运算理由

(2)学生自己探究交流

4、学生用语言叙述公式

5、师生共同a、b对应项教师书写

6、学生独立完竣一练展示结果

7、学生四人一组讨论交流

8、有兴趣的同学可以探

完全平方公式(教案)贾村中学聂盼山

一、教学目标

(1)(1)知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。

(2)(2)过程与方法目标;学生探究完全平方公式,体会数形结合。

二、教学重点;公式结构及运用。

三、教学难点;公式中字母AB的含义理解与公式正确运用。

四、教具;自制长方形、正方形卡片

五、教学过程;

教师活动

学生活动

1、L创设情景,提出问题,引入课题

(1)(1)想一想

一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人

就会每个孩子几块糖。

(1)(1)第一天,a个男孩去看老人,老人共给他们几块糖?

(2)(2)第二天,个女孩子去看望老人,老人共给他们多少块精?

(3)(3)第三天,()个孩子一起去看望老人,老人共给他仅多少块糖?

(4)(4)第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)

1、1、学生四人一组讨论。

填空:

(1)第一天给孩子块糖。

(2)第二天给孩子块糖。

(3)第三天给孩子块糖。

男孩子第三天多得块糖

女孩第三天多得块糖。

教师活动

学生活动

(2)(2)做一做、请同学拼图

a

教师巡视指导学生拼图

2、2、教师提问:

(1)、大正方形边长?(2)每一块卡片的面积是多少?(3)用不同形式表示正方形总面

积,比较发现什么?

3、3、想T®

(1)(a+b)用多项式乘法法则说明

(2)(a-b)

4、请同学们自己叙述上面的等式

5、说一说,ab能表示什么?

(□+o)口+2口。+。

6、算一算

(1)(2X-3)(2)(4X+5Y)

请同学们分清ab

7、练一练

(1)(2X-3Y)(2)(2XY-3X)

8、试T(a+b+c)

作业:P1351、2

学生2人一组拼图交流

2、学生观察思考

(1)(1)大正方形边长?

(2)(2)四块卡片的面积分别是

(3)(3)大正方形的总面积是多少?

3、(1)学生运用多项式乘法法则推导

(a+b)=a+2ab+b说出每一步运算理由

(2)学生自己探究交流

4、学生用语言叙述公式

5、师生共同a、b对应项教师书写

6、学生独立完成练一练展示结果

7、学生四人一组讨论交流

8、有兴趣的同学可以探

《完全平方公式》教案8

运用完全平方公式计算:

(1)(2)(3)

(4)(5)(6)

(7)(8)(9)

(10)

学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要

集中解决.

5.变式训练,培养能力

《完全平方公式》教案9

教学目标完全平方公式的推导及其应用完全平方公式的几何解释视学生对算理的理解,

有意识地培养学生的思维条理性和表达能力.

教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.

教学过程:

一、提出问题,学生自学

问题:根据乘方的定义,我们知道:a2=aa,那么(a+b)2应该写成什么样的形式呢?(a+b)2

的运算结果有什么规律?计算下列各式,你能发现什么规律?

(1)(p+l)2=(p+l)(p+l)=;(m+2)2=;

(2)(pl)2=(pl)(pl)=;(m2)2=;

学生讨论,教师归纳,得出结果:

(I)(p+l)2=(p+l)(p+l)=p2+2p+l

(m+2)2=(m+2)(m+2)=m2+4m+4

(2)(pl)2=(pl)(pl)=p22p+l

(m2)2=(m2)(m2)=m24m+4

分析推广:结果中有两个数的平方和,而2p=2pl,4m=2m2,恰好是两个数乘积的二倍

(1)(2)之间只差一个符号.

推广:计算(a+b)2=;(ab)2=.

得到公式,分析公式

结论:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

即:两数和(或差)的.平方,等于它们的平方和,加(或减)它们的积的2倍.

二、几何分析:

你能根据图(1)和图(2)的面积说明完全平方公式吗?

图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④

四个部分,它们分别的面积为a2.ab.ab.b2因此整个面积为a2+ab+ab+b2=a2+2ab+b2,

即说明(a+b)2=a2+2ab+b2.请点击下载Word版完整教案:新人教版八年级数学上册《完全

平方公式》教案教案《新人教版八年级数学上册《完全平方公式》教案》,来自网!

《完全平方公式》教案10

运用乘法公式计算:

(I)(2)

(3)(4)

学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,

每组各派一个学生板演本组题目.

这样做的目的是训练学生的快速反应能力及综合运用知识的'能力,同时也激发学生的学习

兴趣,活跃课堂气氛.

(四)总结、扩展

这节课我们学习了乘法公式中的完全平方公式.

引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

八、布置作业

《完全平方公式》教案11

课题教案:完全平方公式

学科:数学

年级:七年级

1内容本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式

的两种形式。

1.1以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。使学

生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实

践能力等方面的发展。

1.2用标准的数学语言得出结论,使学生感受科学的严谨,启迪学生的数学思维。

2教学目标

2.1知识目标:会推导完全平方公式,并能运用公式进行简单的计算;了解

(a+b)2=a2+2ab+b2的几何背景。

2.2技能目标:经历由一般的多项式乘法向乘法公式过渡的探究过程,进一步培养学生归纳

总结的能力,并给公式的应用打下坚实的基础。

2.3情感与态度目标:通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动充

满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。

3教学重点完全平方公式的准确应用。

4教学难点掌握公式中字母表达式的意义及灵活运用公式进行计算。

5教育理念和教学方式

5.1教学是师生交往、积极互动、共同发展的过程。教师是学生学习的组织者、促进者、合

作者:本节的教学过程,要为学生的动手实践,自主探索与合作交襁供机会,搭建平台;尊重

和自己意见不一致的学生,赞赏每一位学生的结论和对自己的超越,尊重学生的个人感受和独特

见解;帮助学生发现他们所学东西的个人意义和社会价值,通过恰当的教学方式引导学生学会自

我调适,自我选择。

学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用

自己的心灵去亲自感悟。

5.2采用"问题情景一探究交流T导出结论一强化训练”的模式展开教学。充分利用动手实

践的机会,尽可能增加教学过程的趣味性,强调学生的'动手操作和主动参与,通过丰富多彩的

集体讨论、小组活动,以合作学习促进自主探究。

6具体教学过程设计如下:

6.1提出问题:[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会

计算下列各题吗?

(x+3)2=f(x-3)2=,

这些式子的左边和右边有什么规律?再做几个试一试:

(2m+3n)2=,(2m-3n)2:

6.2分析问题

621[学生回答]分组交流、讨论多项式的结构特点

(1)原式的特点。两数和的平方。

(2)结果的项数特点。等于它们平方的和,加上它们乘积的两倍

(3)三项系数的特点(特别是符号的特点).

(4)三项与原多项式中两个单项式的关系。

622[学生回答]总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

623、[学生回答]完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

6.3运用公式,解决问题

6.3.1口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=,(m-n)2=f

(-m+n)2=l(-m-n)2=r

6.3.2小试牛刀

@(x+y)2=;0(-y-x)2=;

③(2x+3)2三④(3a-2)2三

6.4学生小结:你认为完全平方公式在应用过程中,需要注意那些问题?

(1)公式右边共有3项。

(2)两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

6.5[作业]P34随堂练习P36习题

《完全平方公式》教案12

教学目标:

1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、

归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。

2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并

会运用公式进行简单的计算。

3、了解完全平方公式的几何背景,培养学生的数形结合意识。

4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。

教学重点:

1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;

2、会用完全平方公式进行运算。

教学难点:

会用完全平方公式进行运算

教学方法:

探索讨论、归纳总结。

教学过程:

一、回顾与思考

活动内容:复习已学过的平方差公式

1、平方差公式:(a+b)(a—b)=a2—b2;

公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。

右边是两数的平方差。

2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

二、情境引入

活动内容:提出问题:

一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,

形成四块实验田,以种植不同的新品种(如图)。

用不同的形式表示实验田的总面积,并进行比较。

三、初识完全平方公式

活动内容:

1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全

平方公式推导出两数差的.完全平方公式:(a-b)2=a2-2ab+b2o

2、引导学生利用几何图形来验证两数差的完全平方公式。

3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。

结构特点:左边是二项式(两数和(差))的平方;

右边是两数的平方和加上(减去)这两数乘积的两倍。

语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。

四、再识完全平方公式

活动内容:例1用完全平方公式计算:

(l)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+l)

2

2、总结口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。

五、巩固练习:

1、下列各式中哪些可以运用完全平方公式计算。

1、6完全平方公式:

一、学习目标

1、会推导完全平方公式,并能运用公式进行简单的计算。

2、了解完全平方公式的几何背景

二、学习重点:会用完全平方公式进行运算。

三、学习难点:理解完全平方公式的结构特征并能灵活应用公式进行计算。

四、学习设计

(一)预习准备

(1)预习书p23—26

(2)思考:和的平方等于平方的和吗?

1、6《完全平方公式》习题

1、已知实数x、y都大于2,试比较这两个数的积与这两个数的和的大小,并说明理由。

2、已知(a+b)2=24,(a—b)2=20,求:

(l)ab的值是多少?

(2)a2+b2的值是多少?

3、已知2(x+y)=—6,xy=l,求代数式(x+2)—(3xy—y)的值。

《1、6完全平方公式》课时练习

1、(5-x2)2等于;

答案:25—10x2+x4

解析:解答:(5—x2)2=25—10x2+x4

分析:根据完全平方公式与幕的乘方法则可完成此题。

2、(x—2y)2等于;

答案:x2—8xy+4y2

解析:解答:(X—2y)2=x2—8xy+4y2

分析:根据完全平方公式与积的乘方法则可完成此题。

3、(3a-4b)2行;

答案:9a2—24ab+l6b2

解析:解答:(3a—4b)2=9a2—24ab+16b2

分析:根据完全平方公式可完成此题。

《完全平方公式》教案13

学习目标:

1、会推导完全平方公式,并能用几何图形解释公式;

2、利用公式进行熟练地计算;

3、经历探索完全平方公式的推导过程,发展符号感,体会特殊一般特殊的认知规律。

学习过程:

(一)自主探索

1、计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论