版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教A新版高一数学上册月考试卷138考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、在△中,为△的外心,则等于A.B.C.12D.62、某单位职工共有600人,其中青年职工250人,中年职工200人,老年职工150人,现采取分层抽样法抽取样本,样本中青年职工5人,则样本容量是A.12B.15C.18D.253、【题文】在△ABC中,“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、【题文】将函数的图象向左平移1个单位,再将位于轴下方的图象沿轴翻折得到函数的图象,若实数满足则的值是()A.B.C.D.5、sin15鈭�cos15鈭�=(
)
A.14
B.34
C.12
D.32
评卷人得分二、填空题(共6题,共12分)6、已知数列是首项为1,公比为的等比数列,则.7、幂函数的定义域为.8、【题文】函数y=ax-(a>0;a≠1)的图象可能是________.(填序号)
9、【题文】如图,已知AB是⊙O的直径,AB=2,AC和AD是⊙O的两条弦,AC=AD=则∠CAD的弧度数为.10、【题文】将边长为的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记则S的最小值是____11、若则tanαtanβ=______.评卷人得分三、作图题(共5题,共10分)12、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.13、作出下列函数图象:y=14、作出函数y=的图象.15、请画出如图几何体的三视图.
16、绘制以下算法对应的程序框图:
第一步;输入变量x;
第二步,根据函数f(x)=
对变量y赋值;使y=f(x);
第三步,输出变量y的值.评卷人得分四、计算题(共4题,共20分)17、已知x=,y=,则x6+y6=____.18、已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,则x4+x3y+x2y2+xy3+y4=____.19、(2009•庐阳区校级自主招生)如图所示的方格纸中,有△ABC和半径为2的⊙P,点A、B、C、P均在格点上(每个小方格的顶点叫格点).每个小方格都是边长为1的正方形,将△ABC沿水平方向向左平移____单位时,⊙P与直线AC相切.20、代数式++的值为____.评卷人得分五、证明题(共4题,共28分)21、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:
(1)AD=AE
(2)PC•CE=PA•BE.22、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.23、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.24、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分六、综合题(共1题,共8分)25、设L是坐标平面第二;四象限内坐标轴的夹角平分线.
(1)在L上求一点C,使它和两点A(-4,-2)、B(5,3-2)的距离相等;
(2)求∠BAC的度数;
(3)求(1)中△ABC的外接圆半径R及以AB为弦的弓形ABC的面积.参考答案一、选择题(共5题,共10分)1、B【分析】试题分析:取AB的中点D,连接OD,易知所以答案选B.考点:向量的线性运算与数量积运算【解析】【答案】B2、A【分析】试题分析:由题知,抽样比例为故样本容量为=12,故选A.有分层抽样方法知,抽样比例为50:1,故样本容量为600÷50=12.考点:分层抽样方法【解析】【答案】A3、C【分析】【解析】根据正弦定理和三角形中大角对大边;小角对小边得:
故选C【解析】【答案】C4、C【分析】【解析】
试题分析:据题意得因为所以由得所以
所以
由得(0舍去),
所以
考点:1、图象的变换;2、对数运算;3、方程与不等式.【解析】【答案】C5、A【分析】解:因为sin2娄脕=2sin娄脕cos娄脕
所以sin15鈭�cos15鈭�=12sin30鈭�=14
.
故选A.
由正弦的倍角公式变形即可解之.
本题考查正弦的倍角公式.【解析】A
二、填空题(共6题,共12分)6、略
【分析】【解析】
因为数列是首项为1,公比为的等比数列【解析】【答案】7、略
【分析】试题分析:因为所以定义域为求函数定义域、值域,及解不等式时,需明确最后结果应是解集的形式.列不等式时要分清是否含有等号,这是解题的易错点.幂函数的定义域,不仅看值的正负,而且看的奇偶.考点:幂函数的定义域.【解析】【答案】8、略
【分析】【解析】当a>1时,y=ax-为增函数,且在y轴上的截距0<1-<1,故①②不正确;当0<1时,y=ax-为减函数,且在y轴上的截距1-<0,故④正确.【解析】【答案】④9、略
【分析】【解析】解:连接CB,BD,则可得
由于和都为三角形内角,故所以
答案:【解析】【答案】10、略
【分析】【解析】略【解析】【答案】11、略
【分析】解:∵
∴cosαcosβ-sinαsinβ=cosαcosβ+sinαsinβ=
∴联立,解得:cosαcosβ=sinαsinβ=
∴tanαtanβ==.
故答案为:.
由已知利用两角和与差的余弦函数公式可得cosαcosβ-sinαsinβ=cosαcosβ+sinαsinβ=联立解得cosαcosβ,sinαsinβ,利用同角三角函数基本关系式即可计算得解.
本题主要考查了两角和与差的余弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想和计算能力,属于基础题.【解析】三、作图题(共5题,共10分)12、略
【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.
∵点A与点A′关于CD对称;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:铺设管道的最省费用为10000元.13、【解答】幂函数y={#mathml#}x32
{#/mathml#}的定义域是[0;+∞),图象在第一象限,过原点且单调递增,如图所示;
【分析】【分析】根据幂函数的图象与性质,分别画出题目中的函数图象即可.14、【解答】图象如图所示。
【分析】【分析】描点画图即可15、解:如图所示:
【分析】【分析】由几何体是圆柱上面放一个圆锥,从正面,左面,上面看几何体分别得到的图形分别是长方形上边加一个三角形,长方形上边加一个三角形,圆加一点.16、解:程序框图如下:
【分析】【分析】该函数是分段函数,当x取不同范围内的值时,函数解析式不同,因此当给出一个自变量x的值时,必须先判断x的范围,然后确定利用哪一段的解析式求函数值,因为函数解析式分了三段,所以判断框需要两个,即进行两次判断,于是,即可画出相应的程序框图.四、计算题(共4题,共20分)17、略
【分析】【分析】根据完全立法和公式将所求的代数式转化为x6+y6=(x2+y2)3-3x2y2(x2+y2);然后将已知条件代入并求值即可.【解析】【解答】解:∵x=,y=;
∴x6+y6
=(x2+y2)3-3x2y2(x2+y2)
=(5-+5+)3-3×(5-)(5+)(5-+5+)
=103-3×20×10
=400;
故答案是:400.18、略
【分析】【分析】本题须先根据题意求出x2+y2和x2y2的值,再求出x4+y4的值,最后代入原式即可求出结果.【解析】【解答】解:x2y+xy2=xy(x+y)=66;
设xy=m;x+y=n;
由xy+x+y=17;得到m+n=17,由xy(x+y)=66,得到mn=66;
∴m=6;n=11或m=11,n=6(舍去);
∴xy=m=6;x+y=n=11;
x2+y2=112-2×6=109,x2y2=36
x4+y4=1092-36×2=11809
x4+x3y+x2y2+xy3+y4
=11809+6×109+36
=12499.
故答案为:1249919、略
【分析】【分析】平移后利用切线的性质作PD⊥A′C′于点D求得PD,再求得PA′的长,进而得出PA-PA′和AA″的长,即可求得平移的距离.【解析】【解答】解:∵A′C′与⊙P相切;
作PD⊥A′C′于点D;
∵半径为2;
∴PD=2;
∵每个小方格都是边长为1的正方形;
∴AB=5,AC=2;
∴cosA==;
∴PA′=PD÷cosA=2÷=;
∴AA′=5-,AA″=5+;
故答案为5-或5+.20、略
【分析】【分析】本题可分4种情况分别讨论,解出此时的代数式的值,然后综合得到所求的值.【解析】【解答】解:由分析知:可分4种情况:
①a>0,b>0,此时ab>0
所以++=1+1+1=3;
②a>0,b<0,此时ab<0
所以++=1-1-1=-1;
③a<0,b<0,此时ab>0
所以++=-1-1+1=-1;
④a<0,b>0,此时ab<0
所以++=-1+1-1=-1;
综合①②③④可知:代数式++的值为3或-1.
故答案为:3或-1.五、证明题(共4题,共28分)21、略
【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;
即可得到结论;
(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,
∵PC是⊙O的切线;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB为⊙O的直径;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC•CE=PA•BE.22、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.23、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.24、略
【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;
由图知:∠FDC是△ACD的一个外角;
则有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四边形ABCD是圆的内接四边形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分别是∠AFB、∠AED的角平分线;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)连接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可证得∠NEX=∠MEX;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度网络安全设备预防性维护保养合同模板
- 2025年版智慧社区门卫及智能安防系统运营合同3篇
- 二零二五年度私人诊所与医护人员合作聘用及医疗信息化建设合同
- 2025年度美甲店门面转让及美容美发行业市场调研合同
- 2025版套房装修施工现场安全管理制度合同3篇
- 2025年度出租车租赁合同车辆租赁合同续签与终止协议
- 二零二五年度购房合同纠纷调解协议
- 2025年度物业人员雇用及社区物业服务标准化建设合同
- 2025年度基础设施建设项目股权转让协议范本
- 二零二五年度大数据处理软件著作权授权合同范本
- 项目绩效和奖励计划
- 光伏自发自用项目年用电清单和消纳计算表
- 量子计算在医学图像处理中的潜力
- 阿里商旅整体差旅解决方案
- 浙江天台历史文化名城保护规划说明书
- 逻辑思维训练500题
- 第八讲 发展全过程人民民主PPT习概论2023优化版教学课件
- 实体瘤疗效评价标准RECIST-1.1版中文
- 企业新春茶话会PPT模板
- GB/T 19185-2008交流线路带电作业安全距离计算方法
- DIC诊治新进展课件
评论
0/150
提交评论