版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年四川省达州市中考数学试题本考试为闭卷考试.考试时间120分钟、满分150分.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1-2页,第Ⅱ卷3-8页,共8页.温馨提示:1.答题前,考生需用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号正确填写在答题卡对应位置,待监考老师粘贴条形码后,再认真核对条形码上的信息与自己的准考证上的信息是否一致.2.选择题必须使用2B铅笔在答题卡相应位置规范填涂.如需改动,用橡皮擦擦干净后,再选涂其他答案标号;非选择题用0.5毫米黑色签字笔作答,答案必须写在答题卡对应的框内.超出答题区答案无效;在草稿纸、试题卷上作答无效.3.不要折叠、弄破、弄皱答题卡.不得使用涂改液、修正带、刮纸刀等影响答题卡整洁.4.考试结束后,将试卷及答题卡一并交回.第Ⅰ卷(选择题共40分)一、单项选择题(每小题4分.共40分)1.有理数2024的相反数是()A2024 B. C. D.2.大米是我国居民最重要的主食之一,与此同时,我国也是世界上最大的大米生产国,水稻产量常年稳定在2亿吨以上.将2亿用科学记数法表示为()A. B. C. D.3.下列计算正确的是()A. B.C. D.4.如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热 B.爱 C.中 D.国5.小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间.则“■”在范围内无论为何值都不影响这组数据的()A.平均数 B.众数 C.中位数 D.方差6.当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象(如图所示).图中,,则的度数为()A. B. C. D.7.甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工个零件.可列方程为()A B.C. D.8.如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,,其中点,,都在格点上,则的值为()A.2 B. C. D.39.抛物线与轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是()A. B. C. D.10.如图,是等腰直角三角形,,,点,分别在,边上运动,连结,交于点,且始终满足,则下列结论:①;②;③面积的最大值是;④的最小值是.其中正确的是()A①③ B.①②④ C.②③④ D.①②③④第II卷(非选择题共110分)二、填空题(每小题4分,共20分)11.分解因式:3x2﹣18x+27=________.12.“四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是______.13.若关于的方程无解,则的值为______.14.如图,在中,,分别是内角、外角的三等分线,且,,在中,,分别是内角,外角的三等分线.且,,…,以此规律作下去.若.则______度.15.如图,在中,.点在线段上,.若,,则的面积是______.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16.(1)计算:;(2)解不等式组17.先化简:,再从,,0,1,2之中选择一个合适的数作为的值代入求值.18.2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:等级分数段频数m请根据表中提供的信息.解答下列问题:(1)此次调查共抽取了______名选手,______,______;(2)扇形统计图中,等级所对应的扇形圆心角度数是______度;(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.19.如图,线段、相交于点.且,于点.(1)尺规作图:过点作垂线,垂足为点、连接、;(不写作法,保留作图痕迹,并标明相应的字母)(2)若,请判断四边形的形状,并说明理由.(若前问未完成,可画草图完成此问)20.“三汇彩婷会”是达州市渠县三汇镇独有的传统民俗文化活动、起源于汉代、融数学,力学,锻造,绑扎,运载于一体,如图1,在一次展演活动中,某数学综合与实践小组将彩婷抽象成如图2的示意图,是彩婷的中轴、甲同学站在处.借助测角仪观察,发现中轴上的点的仰角是,他与彩婷中轴的距离米.乙同学在观测点处借助无人机技术进行测量,测得平行于水平线,中轴上的点的仰角,点、之间的距离是米,已知彩婷的中轴米,甲同学的眼睛到地面的距离米,请根据以上数据,求中轴上的长度.(结果精确到米,参考数据,)
21.如图,一次函数(、为常数,)的图象与反比例函数(为常数,)的图象交于点,.(1)求反比例函数和一次函数的解析式;(2)若点是轴正半轴上的一点.且.求点的坐标.22.为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将、两个品种的柑橘加工包装成礼盒再出售.已知每件品种柑橘礼盒比品种柑橘礼盒的售价少元.且出售件品种柑橘礼盒和件品种柑橘礼盒的总价共元.(1)求、两种柑橘礼盒每件的售价分别为多少元?(2)已知加工、两种柑橘礼盒每件的成本分别为元、元、该乡镇计划在某农产品展销活动中售出、两种柑橘礼盒共盒,且品种柑橘礼盒售出的数量不超过品种柑橘礼盒数量的倍.总成本不超过元.要使农户收益最大,该乡镇应怎样安排、两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?23.如图,是的直径.四边形内接于.连接,且,以为边作交的延长线于点.(1)求证:是的切线;(2)过点作交于点.若,求的值.24.如图1,抛物线与轴交于点和点,与轴交于点.点是抛物线的顶点.(1)求抛物线解析式;(2)如图2,连接,,直线交抛物线的对称轴于点,若点是直线上方抛物线上一点,且,求点的坐标;(3)若点是抛物线对称轴上位于点上方的一动点,是否存在以点,,为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.25.在学习特殊的平行四边形时,我们发现正方形的对角线等于边长的倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1)四边形是菱形,,,..又,,______+______.化简整理得______.【类比探究】(2)如图2.若四边形是平行四边形,请说明边长与对角线的数量关系.【拓展应用】(3)如图3,四边形为平行四边形,对角线,相交于点,点为的中点,点为的中点,连接,若,,,直接写出的长度.2024年四川省达州市中考数学试题本考试为闭卷考试.考试时间120分钟、满分150分.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1-2页,第Ⅱ卷3-8页,共8页.温馨提示:1.答题前,考生需用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号正确填写在答题卡对应位置,待监考老师粘贴条形码后,再认真核对条形码上的信息与自己的准考证上的信息是否一致.2.选择题必须使用2B铅笔在答题卡相应位置规范填涂.如需改动,用橡皮擦擦干净后,再选涂其他答案标号;非选择题用0.5毫米黑色签字笔作答,答案必须写在答题卡对应的框内.超出答题区答案无效;在草稿纸、试题卷上作答无效.3.不要折叠、弄破、弄皱答题卡.不得使用涂改液、修正带、刮纸刀等影响答题卡整洁.4.考试结束后,将试卷及答题卡一并交回.第Ⅰ卷(选择题共40分)一、单项选择题(每小题4分.共40分)1.有理数2024相反数是()A.2024 B. C. D.【答案】B【解析】【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是,故选:B.2.大米是我国居民最重要主食之一,与此同时,我国也是世界上最大的大米生产国,水稻产量常年稳定在2亿吨以上.将2亿用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于与小数点移动的位数相同.【详解】解:2亿,故选:B.3.下列计算正确的是()A. B.C. D.【答案】C【解析】【分析】本题主要考查了完全平方公式,积的乘方计算,同底数幂除法计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A、与不是同类项,不能合并,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算正确,符合题意;D、,原式计算错误,不符合题意;故选:C.4.如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热 B.爱 C.中 D.国【答案】B【解析】【分析】本题考查了正方体相对两个面上的文字,正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答即可.【详解】解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,则与“我”字相对的字是“爱”,与“们”字相对的字是“中”,与“国”字相对的字是“热”,故选:B.5.小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间.则“■”在范围内无论为何值都不影响这组数据的()A.平均数 B.众数 C.中位数 D.方差【答案】C【解析】【分析】此题考查数据平均数、众数、中位数方差的计算方法,根据中位数的定义求解可得.【详解】解:依题意“■”该数据在30~40之间,则这组数据的中位数为,∴“■”在范围内无论为何值都不影响这组数据的中位数.故选:C.6.当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象(如图所示).图中,,则的度数为()A. B. C. D.【答案】B【解析】【分析】本题考查了平行线的性质,根据平行线的性质可得,代入数据,即可求解.【详解】解:依题意,水面与容器底面平行,∴∵,,∴故选:B.7.甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工个零件.可列方程为()A. B.C. D.【答案】D【解析】【分析】本题主要考查了分式方程的实际应用,设乙每小时加工个零件,则甲每小时加工个零件,再根据时间工作总量工作效率结合甲的工作时间比乙的工作时间少30分钟列出方程即可.【详解】解:设乙每小时加工个零件,则甲每小时加工个零件,由题意得,故选:D.8.如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,,其中点,,都在格点上,则的值为()A.2 B. C. D.3【答案】B【解析】【分析】本题考查了菱形的性质,解直角三角形,延长交格点于点,连接,分别在格点上,根据菱形的性质,进而得出,解直角三角形求得的长,根据对顶角相等,进而根据正切的定义,即可求解.【详解】解:如图所示,延长交格点于点,连接,分别在格点上,依题意,,∴∴又,∴∴故选:B.9.抛物线与轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是()A. B. C. D.【答案】A【解析】【分析】本题考查了二次函数的性质,设抛物线与轴交于两点,横坐标分别为,依题意,,根据题意抛物线开口向下,当时,,即可判断A选项,根据对称轴即可判断B选项,根据一元二次方程根的判别式,即可求解.判断C选项,无条件判断D选项,据此,即可求解.【详解】解:依题意,设抛物线与轴交于两点,横坐标分别为依题意,∵,抛物线开口向下,∴当时,,即∴,故A选项正确,符合题意;若对称轴为,即,而,不能得出对称轴直线,故B选项不正确,不符合题意;∵抛物线与坐标轴有2个交点,∴方程有两个不等实数解,即,又∴,故C选项错误,不符合题意;无法判断的符号,故D选项错误,不符合题意;故选:A.10.如图,是等腰直角三角形,,,点,分别在,边上运动,连结,交于点,且始终满足,则下列结论:①;②;③面积的最大值是;④的最小值是.其中正确的是()A.①③ B.①②④ C.②③④ D.①②③④【答案】D【解析】【分析】过点作于点,证明,根据相似三角形的性质即可判断①;得出,根据三角形内角和定理即可判断②;在的左侧,以为斜边作等腰直角三角形,以为半径作,根据定弦定角得出在的上运动,进而根据当时,面积的最大,根据三角形的面积公式求解,即可判断③,当在上时,最小,过点作交的延长线于点,勾股定理,即可求解.【详解】解:如图所示,过点作于点,∵是等腰直角三角形,,,∴,∵,∴∴又∵∴,∴,故①正确;∵,∴,∴即在中,即∵是等腰直角三角形,∴平分∴∴∴,∴,故②正确,如图所示,在的左侧,以为斜边作等腰直角三角形,以为半径作,且∴,∵∴∴在上运动,∴,连接交于点,则,∴当时,结合垂径定理,最小,∵是半径不变∴此时最大则面积的最大,∴,故③正确;如图所示,当在上时,最小,过点作交的延长线于点,∴是等腰直角三角形,∴,在中,,∴,∴的最小值是.故选:D.【点睛】本题考查了相似三角形的性质与判定,圆内接四边形对角互补,求圆外一点到圆上的距离最值问题,勾股定理,等腰直角三角形的性质与判定,熟练掌握以上知识是解题的关键.第II卷(非选择题共110分)二、填空题(每小题4分,共20分)11.分解因式:3x2﹣18x+27=________.【答案】3(x﹣3)2【解析】【分析】先提取公因式3,再根据完全平方公式进行二次分解.【详解】3x2-18x+27,
=3(x2-6x+9),
=3(x-3)2.
故答案为:3(x-3)2.12.“四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是______.【答案】【解析】【分析】本题考查画树状图法求等可能事件的概率;画树状图,共有12种等可能的结果,其中抽取的两本恰好是《水浒传》和《西游记》的结果有2种,再由概率公式求解即可.【详解】解:把《红楼梦》《水浒传》《三国演义》《西游记》四本书分别记为A,B,C,D,根据题意,画出如下的树状图:由树状图可知看出,所有可能出现的结果共有12种,这些结果出现的可能性相等.两本是《三国演义》和《西游记》的结果有2种,所以P(两本是《三国演义》和《西游记》).故答案为:.13.若关于的方程无解,则的值为______.【答案】4【解析】【分析】本题主要考查了根据分式方程解的情况求参数,先解分式方程得到,再根据分式方程无解得到,解方程即可得到答案.【详解】解:去分母得:,解得,∵关于的方程无解,∴原方程有增根,∴,即,∴,故答案为:.14.如图,在中,,分别是内角、外角的三等分线,且,,在中,,分别是内角,外角的三等分线.且,,…,以此规律作下去.若.则______度.【答案】【解析】【分析】本题考查了三角形的外角定理,等式性质,熟练掌握知识点是解题的关键.先分别对运用三角形的外角定理,设,则,,则,得到,,同理可求:,所以可得.【详解】解:如图:∵,,∴设,,则,,由三角形的外角的性质得:,,∴,如图:同理可求:,∴,……,∴,即,故答案为:.15.如图,在中,.点在线段上,.若,,则的面积是______.【答案】【解析】【分析】本题考查解直角三角形,勾股定理.过作于,设,则,利用列出等式即可.【详解】解:过作于,,,,是等腰直角三角形设,则解得(舍去)或经检验是原分式方程的解,.故答案为:.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16.(1)计算:;(2)解不等式组【答案】(1);(2)【解析】【分析】本题考查了实数的混合运算,解一元一次不等式组;(1)根据负整数指数幂,二次根式的性质,特殊角的三角函数值,零指数幂进行计算即可求解;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)(2)解不等式①得:解不等式②得:∴不等式组的解集为:17.先化简:,再从,,0,1,2之中选择一个合适的数作为的值代入求值.【答案】,当时,原式.【解析】【分析】本题主要考查了分式的化简求值,先把小括号内的式子通分,再把除法变成乘法后约分化简,接着根据分式有意义的条件确定x的值,最后代值计算即可.【详解】解:,∵分式要有意义,∴,∴且且,∴当时,原式.18.2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:等级分数段频数m请根据表中提供的信息.解答下列问题:(1)此次调查共抽取了______名选手,______,______;(2)扇形统计图中,等级所对应的扇形圆心角度数是______度;(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.【答案】(1),,(2)(3)【解析】【分析】本题考查了列表法求概率,频数分布表以及扇形统计图;(1)根据等级的人数除以占比得出总人数,进而求得的值;(2)根据等级的占比乘以,即可求解;(3)设三个项目的冠军分别为,根据列表法求概率,即可求解.【小问1详解】解:依题意,名选手,,∴故答案为:,,.【小问2详解】扇形统计图中,等级所对应的扇形圆心角度数是,故答案为:.【小问3详解】解:设三个项目的冠军分别为,列表如下,
共有6种等可能结果,其中恰好抽到马拉松和欢乐跑冠军的有2种情形,∴恰好抽到马拉松和欢乐跑冠军的概率为19.如图,线段、相交于点.且,于点.(1)尺规作图:过点作的垂线,垂足为点、连接、;(不写作法,保留作图痕迹,并标明相应的字母)(2)若,请判断四边形的形状,并说明理由.(若前问未完成,可画草图完成此问)【答案】(1)见解析(2)四边形是平行四边形,理由见解析【解析】【分析】本题主要考查了平行四边形的判定,垂线的尺规作图,全等三角形的性质与判定:(1)先根据垂线的尺规作图方法作出点F,再连接、即可;(2)先证明,得到,再证明,进而证明,得到,即可证明四边形是平行四边形.【小问1详解】解:如图所示,即为所求;【小问2详解】解:四边形是平行四边形,理由如下:∵,∴,又∵,∴,∴,∵,∴,又∵,∴,∴,∴四边形是平行四边形.20.“三汇彩婷会”是达州市渠县三汇镇独有的传统民俗文化活动、起源于汉代、融数学,力学,锻造,绑扎,运载于一体,如图1,在一次展演活动中,某数学综合与实践小组将彩婷抽象成如图2的示意图,是彩婷的中轴、甲同学站在处.借助测角仪观察,发现中轴上的点的仰角是,他与彩婷中轴的距离米.乙同学在观测点处借助无人机技术进行测量,测得平行于水平线,中轴上的点的仰角,点、之间的距离是米,已知彩婷的中轴米,甲同学的眼睛到地面的距离米,请根据以上数据,求中轴上的长度.(结果精确到米,参考数据,)
【答案】中轴上的长度为米【解析】【分析】本题考查了解直角三角形的应用;过点作于点,分别求得的长,根据,即可求解.【详解】解:如图,过点作于点,依题意,四边形是矩形,∴,∴米答:中轴上的长度为米.21.如图,一次函数(、为常数,)图象与反比例函数(为常数,)的图象交于点,.(1)求反比例函数和一次函数的解析式;(2)若点是轴正半轴上的一点.且.求点的坐标.【答案】(1),(2)【解析】【分析】本题考查反比例函数与一次函数综合题型,也考查了锐角三角函数的应用.(1)用待定系数法先求反比例函数解析式,再求一次函数解析式即可;(2)过作轴于,过作轴于,设,先求得得到,即,得出等量关系解出即可.【小问1详解】解:将代入得将代入得将和代入得解得故反比例函数和一次函数的解析式分别为和;【小问2详解】如图,过作轴于,过作轴于,即设,则,解得(舍去)或经检验,是原分式方程的解,.22.为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将、两个品种的柑橘加工包装成礼盒再出售.已知每件品种柑橘礼盒比品种柑橘礼盒的售价少元.且出售件品种柑橘礼盒和件品种柑橘礼盒的总价共元.(1)求、两种柑橘礼盒每件的售价分别为多少元?(2)已知加工、两种柑橘礼盒每件的成本分别为元、元、该乡镇计划在某农产品展销活动中售出、两种柑橘礼盒共盒,且品种柑橘礼盒售出的数量不超过品种柑橘礼盒数量的倍.总成本不超过元.要使农户收益最大,该乡镇应怎样安排、两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?【答案】(1)、两种柑橘礼盒每件的售价分别为元(2)要使农户收益最大,销售方案为售出种柑橘礼盒盒,售出种柑橘礼盒盒,最大收益为元【解析】【分析】本题考查了二元一次方程组的应用;一元一次不等式的应用,一次函数的应用;(1)设、两种柑橘礼盒每件的售价分别为a元,b元,根据题意列出二元一次方程组,即可求解;(2)设售出种柑橘礼盒盒,则售出种柑橘礼盒盒,根据题意列出不等式组,得出,设收益为元,根据题意列出函数关系式,进而根据一次函数的性质,即可求解.【小问1详解】解:设、两种柑橘礼盒每件的售价分别为元,b元,根据题意得,解得:答:、两种柑橘礼盒每件的售价分别为元;【小问2详解】解:设售出种柑橘礼盒盒,则售出种柑橘礼盒盒,根据题意得,解得:设收益为元,根据题意得,∵∴随的增大而减小,∴当时,取得最大值,最大值为(元)∴售出种柑橘礼盒(盒)答:要使农户收益最大,销售方案为售出种柑橘礼盒盒,售出种柑橘礼盒盒,最大收益为元.23.如图,是的直径.四边形内接于.连接,且,以为边作交的延长线于点.(1)求证:是的切线;(2)过点作交于点.若,求的值.【答案】(1)证明见解析(2)【解析】【分析】(1)如图所示,连接,由直径所对的圆周角是直角得到,导角可证明,进而得到,据此即可证明是的切线;(2)延长交于H,延长交于G,连接,由直径所对的圆周角是直角得到,证明,得到,接着证明,得到,进一步证明,得到,设,则,,进而得到,则,由勾股定理得到,,则,进一步可得.【小问1详解】证明:如图所示,连接,∵是的直径,∴,∴,∵,∴,∵,,∴,∴,∴,∴,又∵是的半径,∴是的切线;【小问2详解】解:如图所示,延长交于H,延长交于G,连接,∵是的直径,∴,即,∵,∴垂直平分,∴,∴,∵,∵,∴,又∵,∴,∴,∵,∴,∴,设,则,∴,∴,∴,∴,∴,∴,∴,∵,∴,∵,∴,∴.【点睛】本题主要考查了切线的判定,求角的余弦值,直径所对的圆周角是直角,同弧所对的圆周角相等,勾股定理,全等三角形的性质与判定等等,正确作出辅助线构造全等三角形和直角三角形是解题的关键.24.如图1,抛物线与轴交于点和点,与轴交于点.点是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接,,直线交抛物线的对称轴于点,若点是直线上方抛物线上一点,且,求点的坐标;(3)若点是抛物线对称轴上位于点上方的一动点,是否存在以点,,为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.【答案】(1)(2)或;(3)或或或【解析】【分析】(1)待定系数法求解析式,即可求解;(2)先求得的坐标,根据勾股定理的逆定理得出是等腰三角形,进而根据得出,连接,设交轴于点,则得出是等腰直角三角形,进而得出,则点与点重合时符合题意,,过点作交抛物线于点,得出直线的解析式为,联立抛物线解析式,即可求解;(3)勾股定理求得,根据等腰三角形的性质,分类讨论解方程,即可求解.【小问1详解】解:∵抛物线与轴交于点和点,∴解得:∴抛物线的解析式为;【小问2详解】由,当时,,则∵,则,对称轴为直线设直线的解析式为,代入,∴解得:∴直线的解析式为,当时,,则∴∴∴是等腰三角形,∴连接,设交轴于点,则∴是等腰直角三角形,∴,,又∴∴∴点与点重合时符合题意,如图所示,过点作交抛物线于点,设直线的解析式为,将代入得,解得:∴直线的解析式为联立解得:,∴综上所述,或;【小问3详解】解:∵,,∴∵点是抛物线对称轴上位于点上方的一动点,设其中∴,①当时,,解得:或②当时,,解得:③当时,,解得:或(舍去)综上所述,或或或.【点睛】本题考查了二次函数综合问题,待定系数法求解析式,面积问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.25.在学习特殊的平行四边形时,我们发现正方形的对角线等于边长的倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1)四边形是菱形,,,..又,,______+______.化简整理得______.【类比探究】(2)如图2.若四边形是平行四边形,请说明边长与对角线的数量关系.【拓展应用】(3)如图3,四边形为平行四边形,对角线,相交于点,点为的中点,点为的中点,连接,若,,,直接写出的长度.【答案】(1),,;(2);(3)【解析】【分析】(1)根据菱形的性质及勾股定理补充过程,即可求解;(2)过点作于点,过点作交的延长线于点,根据平行四边形的性质得,,,证明,得,,,根据勾股定理得,,继而得出的值即可;(3)由(2)可得得出,过点分别作的垂线,垂足分别为,连接,根据勾股定理以及已知条件,分别求得,根据得出,根据得出,进而勾股定理,即可求解.【详解】解:(1)四边形是菱形,,,..又,,.化简整理得故答案为:,,.(),理由如下,过点作于点,过点作交的延长线于点,∴,∵四边形是平行四边形,∴,,,∴,在和中,,∴,∴,,在中,,在中,,∴,∴()∵四边形是平行四边形,,,,∴由()可得∴解得:(负值舍去)∵四边形是平行四边形,∴,,,如图所示,过点分别作的垂线,垂足分别为,连接,∵分别为的中点,∴∵,∴,∵是的中点,∴∴,∴,在中,,∴,∵为的中点,∴,∵,∴,∴∵,∴,∴,∴,∴,∵,∴,∴,∴,在中,.【点睛】本题考查了菱形的性质,平行四边形的性质,勾股定理,全等三角形的性质与判定,相似三角形的性质与判定,平行线分线段成比例,熟练掌握勾股定理是解题的关键.德阳市2024年初中学业水平考试与高中阶段学校招生考试数学试卷说明:1.本试卷分第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题,第Ⅱ卷为非选择题.全卷共6页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,将试卷及答题卡交回.2.本试卷满分150分,答题时间为120分钟.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1.下列四个数中,比小的数是()A.0 B. C. D.2.下列计算正确的是()A. B.C. D.3.如图是某机械加工厂加工的一种零件的示意图,其中,,则等于()A. B. C. D.4.正比例函数的图象如图所示,则的值可能是()A. B. C. D.5.分式方程的解是()A.3 B.2 C. D.6.为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是()A.平均数 B.中位数 C.众数 D.方差7.走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是()A.吉如意 B.意吉如 C.吉意如 D.意如吉8.已知,正六边形的面积为,则正六边形的边长为()A.1 B. C.2 D.49.将一组数,按以下方式进行排列:则第八行左起第1个数是()A. B. C. D.10.某校学生开展综合实践活动,测量一建筑物的高度,在建筑物旁边有一高度为10米的小楼房,小李同学在小楼房楼底处测得处的仰角为,在小楼房楼顶处测得处的仰角为.(在同一平面内,在同一水平面上),则建筑物的高为()米A.20 B.15 C.12 D.11.宽与长的比是的矩形叫黄金矩形,黄金矩形给我们以协调的美感,世界各国许多著名建筑为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形是黄金矩形.,点是边上一点,则满足的点的个数为()A.3 B.2 C.1 D.012.一次折纸实践活动中,小王同学准备了一张边长为4(单位:)的正方形纸片,他在边和上分别取点和点,使,又在线段上任取一点(点可与端点重合),再将沿所在直线折叠得到,随后连接.小王同学通过多次实践得到以下结论:①当点在线段上运动时,点在以为圆心的圆弧上运动;②当达到最大值时,到直线距离达到最大;③的最小值为;④达到最小值时,.你认为小王同学得到的结论正确的个数是()A1 B.2 C.3 D.4第Ⅱ卷(非选择题,共114分)二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.化简:=__________.14.若一个多项式加上,结果是,则这个多项式为______.15.某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占,面试占,试讲占进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为______分.16.如图,四边形是矩形,是正三角形,点是的中点,点是矩形内一点,且是以为底的等腰三角形,则的面积与的面积的比值是______.17.数学活动课上,甲组同学给乙组同学出示了一个探究问题:把数字1至8分别填入如图的八个圆圈内,使得任意两个有线段相连的圆圈内的数字之差的绝对值不等于1.经过探究后,乙组的小高同学填出了图中两个中心圆圈的数字a、b,你认为a可以是______(填上一个数字即可).18.如图,抛物线的顶点的坐标为,与轴的一个交点位于0和1之间,则以下结论:①;②;③若抛物线经过点,则;④若关于的一元二次方程无实数根,则.其中正确结论是______(请填写序号).三、解答题(本大题共7小题,共90分.解答应写出文字说明、证明过程或推演步骤)19.(1)计算:;(2)解不等式组:20.2024年中国龙舟公开赛(四川·德阳站),在德阳旌湖沱江桥水域举行,预计来自全国各地1000余名选手将参赛.旌湖两岸高颜值的绿色生态景观绿化带“德阳之窗”将迎接德阳市民以及来自全国各地的朋友近距离的观看比赛.比赛设置男子组、女子组、本地组三个组别,其中男子组将进行A:100米直道竞速赛,B:200米直道竟速赛,C:500米直道竞速赛,D:3000米绕标赛.为了了解德阳市民对于这四个比赛项目的关注程度,随机对部分市民进行了问卷调查(参与问卷调查的每位市民只能选择其中一个项目),将调查得到的数据绘制成数据统计表和扇形统计图(表、图都未完全制作完成):市民最关注的比赛项目人数统计表比赛项目ABCD关注人数4230ab(1)直接写出a、b的值和D所在扇形圆心角的度数;(2)若当天观看比赛的市民有10000人,试估计当天观看比赛的市民中关注哪个比赛项目的人数最多?大约有多少人?(3)为了缓解比赛当天城市交通压力,维护交通秩序,德阳交警旌阳支队派出4名交警(2男2女)对该路段进行值守,若在4名交警中任意抽取2名交警安排在同一路口执勤,请用列举法(画树状图或列表)求出恰好抽到的两名交警性别相同的概率.21.如图,一次函数与反比例函数的图象交于点.(1)求的值和反比例函数的解析式;(2)将直线向下平移个单位长度后得直线,若直线与反比例函数的图象的交点为,求的值,并结合图象求不等式的解集.22.如图,在菱形中,,对角线与相交于点,点为中点,连接与相交于点,连接并延长交于点.(1)证明:;(2)证明:.23.罗江糯米咸鹅蛋是德阳市非物质文化遗产之一,至今有200多年历史,采用罗江当地林下养殖的鹅产的散养鹅蛋,经过传统秘方加以糯米、青豆等食材以16道工序手工制作而成.为了迎接端午节,进一步提升糯米咸鹅蛋的销量,德阳某超市将购进的糯米咸鹅蛋和肉粽进行组合销售,有A、B两种组合方式,其中A组合有4枚糯米咸鹅蛋和6个肉粽,B组合有6枚糯米咸鹅蛋和10个肉粽.A、B两种组合的进价和售价如下表:价格AB进价(元/件)94146售价(元/件)120188(1)求每枚糯米咸鹅蛋和每个肉粽进价分别为多少?(2)根据市场需求,超市准备的B种组合数量是A种组合数量的3倍少5件,且两种组合的总件数不超过95件,假设准备的两种组合全部售出,为使利润最大,该超市应准备多少件A种组合?最大利润为多少?24.如图,抛物线与轴交于点和点,与轴交于点.(1)求抛物线的解析式;(2)当时,求的函数值的取值范围;(3)将拋物线的顶点向下平移个单位长度得到点,点为抛物线的对称轴上一动点,求的最小值.25.已知的半径为5,是上两定点,点是上一动点,且的平分线交于点.(1)证明:点上一定点;(2)过点作的平行线交的延长线于点.①判断与的位置关系,并说明理由;②若为锐角三角形,求的取值范围.德阳市2024年初中学业水平考试与高中阶段学校招生考试数学试卷说明:1.本试卷分第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题,第Ⅱ卷为非选择题.全卷共6页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,将试卷及答题卡交回.2.本试卷满分150分,答题时间为120分钟.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1.下列四个数中,比小数是()A.0 B. C. D.【答案】D【解析】【分析】本题考查了有理数的大小比较,掌握有理数大小比较的法则是关键.根据有理数的大小比较法则:正数>0>负数;然后根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵正数>0>负数,,∴∴,∴比小的是.故选:D.2.下列计算正确的是()A. B.C. D.【答案】B【解析】【分析】本题考查整式的运算,根据同底数幂的乘法,去括号,单项式乘以多项式,完全平方公式,逐一进行判断即可.【详解】解:A、,原选项计算错误;B、,原选项计算正确;C、,原选项计算错误;D、,原选项计算错误;故选B.3.如图是某机械加工厂加工的一种零件的示意图,其中,,则等于()A. B. C. D.【答案】B【解析】【分析】本题考查了平行线的性质,三角形内角和定理,解答此题的关键是准确识图,熟练掌握平行线的性质.首先根据平行线的性质得出,再根据垂直与三角形的内角和即可求出.【详解】解:∵,,∴,∵,∴,∴故选:B.4.正比例函数的图象如图所示,则的值可能是()A. B. C. D.【答案】A【解析】【分析】本题考查了正比例函数的性质:当,图象经过第一、第三象限,在每一象限内y随x的增大而增大;当,图象经过第二、第四象限,在每一象限内y随x的增大而减小.利用正比例函数的性质得到,然后在此范围内进行判断即可.【详解】解:∵正比例函数图象经过第一、第三象限,∴,∴选项A符合题意.故选:A.5.分式方程的解是()A.3 B.2 C. D.【答案】D【解析】【分析】本题考查分式方程的解法,掌握分式方程的解法与步骤是解题关键.本题考查分式方程的解法,掌握分式方程的解法与步骤是解题关键.【详解】解:,去分母,得,解得,当时,,∴是原方程的解.故选D6.为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是()A.平均数 B.中位数 C.众数 D.方差【答案】C【解析】【分析】本题主要考查中位数、众数、方差、平均数的意义和计算方法,解题的关键是理解各个统计量的实际意义,以及每个统计量所反应数据的特征.先求被遮住投篮成绩的人数,然后根据众数的定义求出众数,而中位数,平均数和方差与所有的数据有关,据此可得答案.【详解】解:∵一共有50名同学,∴被遮住投篮成绩的人数为名,∵众数是一组数据中出现次数最多的数据,∴这50名学生的投篮成绩的众数为3,出现17次,大于16,与被遮盖的数据无关,∵中位数是一组数据中处在最中间的那个数据或处在最中间的两个数据的平均数,∴把这50名学生的成绩从小到大排列,第25名和第26名的投篮成绩不能确定,与被遮盖的数据有关,而平均数和方差都与被遮住的数据有关,故选C.7.走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是()A.吉如意 B.意吉如 C.吉意如 D.意如吉【答案】A【解析】【分析】本题考查的是简单几何体的展开图,利用四棱锥的展开图的特点可得答案.【详解】解:由题意可得:展开图是四棱锥,∴A、B、C处依次写上的字可以是吉,如,意;或如,吉,意;故选A8.已知,正六边形的面积为,则正六边形的边长为()A.1 B. C.2 D.4【答案】C【解析】【分析】本题考查正六边形的性质,正三角形的性质,设出边长去表示正三角形面积和正六边形面积即可.【详解】解:如图:根据多边形的内角和定理可求出正六边形的一个内角为,故正六边形是由6个正三角形构成的,过点作垂足是,设正六边形的边长为,即在正三角形中,∵,∴,在中,一个正三角形的面积为:,正六边形的面积为:,∴,解得:,故选:C.9.将一组数,按以下方式进行排列:则第八行左起第1个数是()A. B. C. D.【答案】C【解析】【分析】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.求出第七行共有28个数,从而可得第八行左起第1个数是第29个数,据此求解即可得.【详解】解:由图可知,第一行共有1个数,第二行共有2个数,第三行共有3个数,归纳类推得:第七行共有个数,则第八行左起第1个数是,故选:C.10.某校学生开展综合实践活动,测量一建筑物的高度,在建筑物旁边有一高度为10米的小楼房,小李同学在小楼房楼底处测得处的仰角为,在小楼房楼顶处测得处的仰角为.(在同一平面内,在同一水平面上),则建筑物的高为()米A.20 B.15 C.12 D.【答案】B【解析】【分析】本题考查的是解直角三角形的实际应用,如图,过作于,则四边形为矩形,设,而,可得,,结合,再解方程即可.【详解】解:如图,过作于,依题意,∴四边形为矩形,∴,,设,而,∴,∵,∴,解得:,经检验是原方程的解,且符合题意;∴,故选B11.宽与长的比是的矩形叫黄金矩形,黄金矩形给我们以协调的美感,世界各国许多著名建筑为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形是黄金矩形.,点是边上一点,则满足的点的个数为()A.3 B.2 C.1 D.0【答案】D【解析】【分析】本题考查了矩形的性质,勾股定理,一元二次方程的解,熟练掌握勾股定理,利用判别式判断一元二次方程解的情况是解题的关键.设,,假设存在点,且,则,利用勾股定理得到,,,可得到方程,结合,然后根据判别式的符号即可确定有几个解,由此得解.【详解】解:如图所示,四边形是黄金矩形,,,设,,假设存在点,且,则,在中,,在中,,,,即,整理得,,又,即,,,,,方程无解,即点不存在.故选:D.12.一次折纸实践活动中,小王同学准备了一张边长为4(单位:)的正方形纸片,他在边和上分别取点和点,使,又在线段上任取一点(点可与端点重合),再将沿所在直线折叠得到,随后连接.小王同学通过多次实践得到以下结论:①当点在线段上运动时,点在以为圆心的圆弧上运动;②当达到最大值时,到直线的距离达到最大;③的最小值为;④达到最小值时,.你认为小王同学得到的结论正确的个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】由折叠可得,可得点到点距离恒为2,即可判断①;连接,由勾股定理得到在中,,由,即可判断③;达到最小值时,点在线段上,证得,得到,从而求得,通过即可判断④.在中,随着的增大而增大,而当最大时,有最大值,有最大值,此时点N与点D重合.过点作于点G,作于点P,可得四边形是矩形,因此,当取得最大值时,有最小值,在中,有最大值,有最大值,即可判断②.【详解】解:∵正方形纸片的边长为,∴,由折叠的性质可知,,∴当点在线段上运动时,点在以为圆心的圆弧上运动.故①正确.连接,∵在正方形中,,,,∴在中,∵,∴,∴的最小值为.故③正确;如图,达到最小值时,点在线段上,由折叠可得,∴,∴,∵,∴,∴,∴,∴,∴.故④错误.在中,,,∴随着的增大而增大,∵,∴当最大时,有最大值,有最大值,此时,点N与点D重合,过点作于点G,作于点P,∵,∴四边形是矩形,∴,当取得最大值时,也是最大值,∵,∴有最小值,∴在中,有最大值,即有最大值,∴点到的距离最大.故②正确.综上所述,正确的共有3个.故选:C【点睛】本题考查轴对称图形的性质,勾股定理,相似三角形的判定及性质,锐角三角形函数的性质,综合运用相关知识是解题的关键.第Ⅱ卷(非选择题,共114分)二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.化简:=__________.【答案】3【解析】【分析】根据二次根式的性质“”进行计算即可得.【详解】解:,故答案为:3.【点睛】本题考查了化简二次根式,解题的关键是掌握二次根式的性质.14.若一个多项式加上,结果是,则这个多项式为______.【答案】【解析】【分析】本题考查整式的加减运算,根据题意“一个多项式加上,结果是”,进行列出式子:,再去括号合并同类项即可.【详解】解:依题意这个多项式为.故答案为:15.某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占,面试占,试讲占进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为______分.【答案】【解析】【分析】本题考查了加权平均数,解题关键是熟记加权平均数公式,准确进行计算.利用加权平均数公式计算即可.【详解】解:她的综合成绩为(分);故答案为:.16.如图,四边形是矩形,是正三角形,点是的中点,点是矩形内一点,且是以为底的等腰三角形,则的面积与的面积的比值是______.【答案】2【解析】【分析】本题考查矩形的性质,正三角形的性质,等腰三角形的性质等知识点,正确设出边长表示出两个面积是解题的关键.作辅助线如图,设,,根据性质和图形表示出面积即可得到答案.【详解】解:如图,找,中点为,,连接,,连接,,过作交延长线于点,延长,与交于点.设,,∵是以为底的等腰三角形,∴在上,∴到的距离即为,∴,在和中,∴,∴,∴,∴,故答案为:2.17.数学活动课上,甲组同学给乙组同学出示了一个探究问题:把数字1至8分别填入如图的八个圆圈内,使得任意两个有线段相连的圆圈内的数字之差的绝对值不等于1.经过探究后,乙组的小高同学填出了图中两个中心圆圈的数字a、b,你认为a可以是______(填上一个数字即可).【答案】1##8【解析】【分析】本题考查了数字规律,理解题意是解题的关键.由于两个中心圆圈有6根连线,数字1至8,共有8个数字,若2,3,4,5,6,7,其中任何一个数字填在中心位置,那么与其相邻的2个数字均不能出现在与中心圆圈相连的6个圆圈中,否则不满足任意两个有线段相连的圆圈内的数字之差的绝对值不等于1,故只剩下5个数字可选,不满足6个空的圆圈需要填入,故中心圆圈只能是1或者8.【详解】解:两个中心圆圈分别有6根连线,数字1至8,共有8个数字,若2,3,4,5,6,7,其中任何一个数字填在中心位置,那么与其相邻的2个数字均不能出现在与中心圆圈相连的6个圆圈中,故只剩下5个数字可选,不满足6个空的圆圈需要填入.位于两个中心圆圈的数字a、b,只可能是1或者8.故答案为:1(或8).18.如图,抛物线的顶点的坐标为,与轴的一个交点位于0和1之间,则以下结论:①;②;③若抛物线经过点,则;④若关于的一元二次方程无实数根,则.其中正确结论是______(请填写序号).【答案】①②④【解析】【分析】本题考查了二次函数的图象与系数的关系,根的判别式,二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.①利用抛物线的顶点坐标和开口方向即可判断;②利用抛物线的对称轴求出,根据图象可得当时,,即可判断;③利用抛物线的对称轴,设两点横坐标与对称轴的距离为,求出距离,根据图象可得,距离对称轴越近的点的函数值越大,即可判断;④根据图象即可判断.【详解】解:①∵抛物线的顶点的坐标为,∴,∴,即,由图可知,抛物线开口方向向下,即,∴,当时,,∴,故①正确,符合题意;②∵直线是抛物线的对称轴,∴,∴,∴由图象可得:当时,,∴,即,故②正确,符合题意;③∵直线是抛物线的对称轴,设两点横坐标与对称轴的距离为,则,,∴,根据图象可得,距离对称轴越近的点的函数值越大,∴,故③错误,不符合题意;④如图,∵关于x的一元二次方程无实数根,∴,故④正确,符合题意.故答案为:①②④三、解答题(本大题共7小题,共90分.解答应写出文字说明、证明过程或推演步骤)19.(1)计算:;(2)解不等式组:【答案】(1),(2)【解析】【分析】(1)先计算立方根、负整数指数幂、锐角三角函数,再进行实数的加减混合运算即可.(2)分别求出不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到”的确定不等式组的解集即可.【详解】(1)原式:.(2)解:由①,得,由②,得,∴不等式组的解集为.【点睛】本题考查实数的混合运算、立方根、负整数指数幂、特殊角的锐角三角函数、解一元一次不等式组,熟练掌握立方根、负整数指数幂、特殊角的锐角三角函数和解一元一次不等式组的方法是解题的关键.20.2024年中国龙舟公开赛(四川·德阳站),在德阳旌湖沱江桥水域举行,预计来自全国各地1000余名选手将参赛.旌湖两岸高颜值的绿色生态景观绿化带“德阳之窗”将迎接德阳市民以及来自全国各地的朋友近距离的观看比赛.比赛设置男子组、女子组、本地组三个组别,其中男子组将进行A:100米直道竞速赛,B:200米直道竟速赛,C:500米直道竞速赛,D:3000米绕标赛.为了了解德阳市民对于这四个比赛项目的关注程度,随机对部分市民进行了问卷调查(参与问卷调查的每位市民只能选择其中一个项目),将调查得到的数据绘制成数据统计表和扇形统计图(表、图都未完全制作完成):市民最关注的比赛项目人数统计表比赛项目ABCD关注人数4230ab(1)直接写出a、b的值和D所在扇形圆心角的度数;(2)若当天观看比赛的市民有10000人,试估计当天观看比赛的市民中关注哪个比赛项目的人数最多?大约有多少人?(3)为了缓解比赛当天城市交通压力,维护交通秩序,德阳交警旌阳支队派出4名交警(2男2女)对该路段进行值守,若在4名交警中任意抽取2名交警安排在同一路口执勤,请用列举法(画树状图或列表)求出恰好抽到的两名交警性别相同的概率.【答案】(1),,(2)D,4000(3)【解析】【分析】本题考查统计表和扇形统计图,用样本估计总体,树状图求概率等知识,正确识图是解题的关键.根据两个图标识图求解即可.【小问1详解】解:根据两图中A的数据可得总人数为:(人),(人),(人),D所在扇形圆心角的度数为:【小问2详解】D:3000米绕标赛的关注人数最多,为(人)答:估计当天观看比赛的市民中关注D:3000米绕标赛比赛项目的人数最多,大约有4000人.【小问3详解】解:根据题意,画出树状图如下图:根据树状图可得,共有12种等可能得结果,其中恰好抽到的两名交警性别相同的概率为:.21.如图,一次函数与反比例函数的图象交于点.(1)求的值和反比例函数的解析式;(2)将直线向下平移个单位长度后得直线,若直线与反比例函数的图象的交点为,求的值,并结合图象求不等式的解集.【答案】(1);反比例函数的解析式为(2);不等式的解集为【解析】【分析】本题主要考查反比例函数与一次函数的交点问题:(1)把代入求出,得,从而可求出的值;(2)由平移得直线与直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度高标准温室大棚施工合作协议范本2篇
- 建设合同范本(2篇)
- 二零二五版白酒品牌代理商白酒回购合作协议3篇
- 二零二五年度城市棚户区改造民房征收补偿合同4篇
- 二零二五年度新型节能门窗研发生产合同4篇
- 部编版八年级语文上册《白杨礼赞》教学设计(共2课时)
- 银行课程设计报告范文
- pvc管道施工方案
- 2024年学校防溺水教案
- 2025年度个人公共安全设施承包合同模板4篇
- 春节联欢晚会节目单课件模板
- 中国高血压防治指南(2024年修订版)
- 教育促进会会长总结发言稿
- 心理调适教案调整心态积极应对挑战
- 喷漆外包服务合同范本
- 2024年电信综合部办公室主任年度述职报告(四篇合集)
- 微机原理与接口技术考试试题及答案(综合-必看)
- 湿疮的中医护理常规课件
- 初中音乐听课笔记20篇
- NUDD新独难异 失效模式预防检查表
- 内蒙古汇能煤电集团有限公司长滩露天煤矿矿山地质环境保护与土地复垦方案
评论
0/150
提交评论