2019届江苏专用高考数学大一轮复习第八章立体几何与空间向量8.2空间点直线平面之间的位置关系讲义理苏教版_第1页
2019届江苏专用高考数学大一轮复习第八章立体几何与空间向量8.2空间点直线平面之间的位置关系讲义理苏教版_第2页
2019届江苏专用高考数学大一轮复习第八章立体几何与空间向量8.2空间点直线平面之间的位置关系讲义理苏教版_第3页
2019届江苏专用高考数学大一轮复习第八章立体几何与空间向量8.2空间点直线平面之间的位置关系讲义理苏教版_第4页
2019届江苏专用高考数学大一轮复习第八章立体几何与空间向量8.2空间点直线平面之间的位置关系讲义理苏教版_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§8.2空间点、直线、平面之间的位置关系基础知识自主学习课时作业题型分类深度剖析内容索引基础知识自主学习1.四个公理公理1:如果一条直线上的

在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的

.公理3:经过

的三点,有且只有一个平面.公理4:平行于同一条直线的两条直线互相

.知识梳理两点一条直线不在同一条直线上平行2.直线与直线的位置关系(1)位置关系的分类平行相交任何(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任意一点O,作直线a′∥a,b′∥b,把直线a′与b′所成的

叫做异面直线a,b所成的角.②范围:

.锐角(或直角)3.直线与平面的位置关系有

、______

三种情况.4.平面与平面的位置关系有

两种情况.5.等角定理如果一个角的两边和另一个角的

,那么这两个角相等.直线在平面内直线与平面相交直线与平面平行平行相交两边分别平行并且方向相同知识拓展1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.2.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(

)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(

)(3)两个平面ABC与DBC相交于线段BC.(

)(4)经过两条相交直线,有且只有一个平面.(

)(5)没有公共点的两条直线是异面直线.(

)√××√×考点自测1.下列命题中正确的个数为____.①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.答案解析②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.22.(2016·无锡模拟)已知a,b,c是空间的三条直线,给出下列四个命题:①若a⊥b,b⊥c,则a⊥c;②若a,b是异面直线,b,c是异面直线,则a,c也是异面直线;③若a,b相交,b,c相交,则a,c也相交;④若a,b共面,b,c共面,则a,c也共面.其中真命题的个数是_____.答案03.已知l,m,n为不同的直线,α,β,γ为不同的平面,则下列判断正确的有______.①若m∥α,n∥α,则m∥n;②若m⊥α,n∥β,α⊥β,则m⊥n;③若α∩β=l,m∥α,m∥β,则m∥l;④若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α.③答案解析m,n可能的位置关系为平行,相交,异面,故①错误;根据面面垂直与线面平行的性质可知②错误;根据线面平行的性质可知③正确;若m∥n,根据线面垂直的判定可知④错误,故只有③正确.4.(教材改编)如图所示,已知在长方体ABCD-EFGH中,AB=

,AD=

,AE=2,则BC和EG所成角的大小是______,AE和BG所成角的大小是______.答案解析45°60°∵BC与EG所成的角等于EG与FG所成的角即∠EGF,tan∠EGF=

=1,∴∠EGF=45°,∵AE与BG所成的角等于BF与BG所成的角即∠GBF,∴∠GBF=60°.5.已知空间四边形ABCD中,M、N分别为AB、CD的中点,则下列判断:①MN≥(AC+BD);②MN>(AC+BD);③MN=(AC+BD);④MN<(AC+BD).其中正确的是______.答案解析④如图,取BC的中点O,连结MO,NO,MN,则OM=

AC,ON=

BD,在△MON中,MN<OM+ON=(AC+BD),∴④正确.题型分类深度剖析题型一平面基本性质的应用例1

(1)(2016·山东)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的___________条件.答案解析充分不必要若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交.(2)已知空间四边形ABCD(如图所示),E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=

BC,CH=

DC.求证:①E、F、G、H四点共面;证明连结EF,GH,如图所示,∵E,F分别是AB,AD的中点,∴EF∥BD.又∵CG=

BC,CH=

DC,∴EF∥GH,∴E、F、G、H四点共面.∴GH∥BD,②三直线FH、EG、AC共点.证明易知FH与直线AC不平行,但共面,∴设FH∩AC=M,∴M∈平面EFHG,M∈平面ABC.又∵平面EFHG∩平面ABC=EG,∴M∈EG,∴FH、EG、AC共点.几何画板展示共面、共线、共点问题的证明(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.思维升华跟踪训练1如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥AD且BC=

AD,BE∥AF且BE=

AF,G、H分别为FA、FD的中点.(1)证明:四边形BCHG是平行四边形;证明由已知FG=GA,FH=HD,可得GH綊

AD.又BC綊

AD,∴GH綊BC.∴四边形BCHG为平行四边形.(2)C、D、F、E四点是否共面?为什么?解答∵BE綊

AF,G是FA的中点,∴BE綊FG,∴四边形BEFG为平行四边形,∴EF∥BG.由(1)知BG綊CH,∴EF∥CH,∴EF与CH共面.又D∈FH,∴C、D、F、E四点共面.题型二判断空间两直线的位置关系例2

(1)(2015·广东改编)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是____.①l与l1,l2都不相交;②l与l1,l2都相交;③l至多与l1,l2中的一条相交;④l至少与l1,l2中的一条相交.答案解析④若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交.(2)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是____.①MN与CC1垂直;②MN与AC垂直;③MN与BD平行;

④MN与A1B1平行.④连结B1C,B1D1,如图所示,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,又BD∥B1D1,∴MN∥BD.∵CC1⊥B1D1,AC⊥B1D1,∴MN⊥CC1,MN⊥AC.又∵A1B1与B1D1相交,∴MN与A1B1不平行.答案解析几何画板展示(3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有______.(填上所有正确答案的序号)答案解析②④图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连结MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉平面GMN,因此GH与MN异面.所以图②④中GH与MN异面.空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.思维升华跟踪训练2

(1)已知a,b,c为三条不重合的直线,有下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为____.答案解析1在空间中,若a⊥b,a⊥c,则b,c可能平行,也可能相交,还可能异面,所以①②错,③显然成立.(2)如图,正方体ABCD—A1B1C1D1的棱长为1,点M∈AB1,N∈BC1,且AM=BN≠,有以下四个结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1是异面直线.其中正确结论的序号是_______.(注:把你认为正确结论的序号都填上)答案解析①③过N作NP⊥BB1于点P,连结MP,可证AA1⊥平面MNP,∴AA1⊥MN,①正确,过M、N分别作MR⊥A1B1、NS⊥B1C1于点R,S,则当M不是AB1的中点、N不是BC1的中点时,直线A1C1与直线RS相交;当M、N分别是AB1、BC1的中点时,A1C1∥RS,∴A1C1与MN可以异面,也可以平行,故②④错误.由①正确知,AA1⊥平面MNP,而AA1⊥平面A1B1C1D1,∴平面MNP∥平面A1B1C1D1,故③正确.综上所述,其中正确的序号是①③.题型三求两条异面直线所成的角例3

(2016·南京模拟)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为___.答案解析如图,将原图补成正方体ABCD-QGHP,连结GP,则GP∥BD,所以∠APG为异面直线AP与BD所成的角,在△AGP中,AG=GP=AP,所以∠APG=.引申探究在本例条件下,若E,F,M分别是AB,BC,PQ的中点,异面直线EM与AF所成的角为θ,求cos

θ的值.解答设N为BF的中点,连结EN,MN,则∠MEN是异面直线EM与AF所成的角或其补角.不妨设正方形ABCD和ADPQ的边长为4,在△MEN中,由余弦定理得即cos

θ=.用平移法求异面直线所成的角的三步法(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.思维升华跟踪训练3

(2016·盐城模拟)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为____.答案解析画出正四面体ABCD的直观图,如图所示.设其棱长为2,取AD的中点F,连结EF,设EF的中点为O,连结CO,则EF∥BD,则∠FEC就是异面直线CE与BD所成的角.△ABC为等边三角形,则CE⊥AB,易得CE=

,同理可得CF=

,故CE=CF.因为OE=OF,所以CO⊥EF.所以cos∠FEC=.典例已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确的命题是______.构造模型判断空间线面位置关系思想与方法系列16思想方法指导答案解析①④本题可通过构造模型法完成,构造法实质上是结合题意构造符合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.返回借助于长方体模型来解决本题,对于①,可以得到平面α、β互相垂直,如图(1)所示,故①正确;对于②,平面α、β可能垂直,如图(2)所示,故②不正确;对于③,平面α、β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.返回课时作业123456789101112131.设a,b是两条不同的直线,α,β是两个不同的平面,a⊂α,b⊥β,则“α∥β”是“a⊥b”的___________条件.答案解析充分不必要若a⊂α,b⊥β,α∥β,则由α∥β,b⊥β⇒b⊥α,又a⊂α,所以a⊥b;若a⊥b,a⊂α,b⊥β,则b⊥α或b∥α或b⊂α,此时α∥β或α与β相交,所以“α∥β”是“a⊥b”的充分不必要条件.2.(2016·南京、盐城一模)现有如下命题:①过平面外一点有且只有一条直线与该平面垂直;②过平面外一点有且只有一条直线与该平面平行;③如果两个平行平面和第三个平面相交,那么所得的两条交线平行;④如果两个平面相互垂直,那么经过第一个平面内一点且垂直于第二个平面的直线必在第一个平面内.其中正确的命题是_______.(填序号)答案解析①③④过平面外一点有无数条直线与该平面平行,故②错.123456789101112133.(2016·镇江模拟)设b,c表示两条直线,α,β表示两个平面,现给出下列命题:①若b⊂α,c∥α,则b∥c;

②若b⊂α,b∥c,则c∥α;③若c∥α,α⊥β,则c⊥β;

④若c∥α,c⊥β,则α⊥β.其中正确的命题是______.答案解析④①中直线b,c平行或异面,则①错误;②中c∥α或c⊂α,则②错误;③中c,β的位置关系可能平行、相交或者直线在平面上,则③错误;由线面平行的性质、线面垂直的性质、面面垂直的判定定理可知④正确,故正确命题是④.123456789101112134.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则下列命题正确的有____.①M一定在直线AC上;②M一定在直线BD上;③M可能在AC上,也可能在BD上;④M既不在AC上,也不在BD上.答案解析①由于EF∩HG=M,且EF⊂平面ABC,HG⊂平面ACD,所以点M为平面ABC与平面ACD的一个公共点,而这两个平面的交线为AC,所以点M一定在直线AC上,故①正确.123456789101112135.四棱锥P-ABCD的所有侧棱长都为

,底面ABCD是边长为2的正方形,则CD与PA所成角的余弦值为_____.答案解析因为四边形ABCD为正方形,故CD∥AB,则CD与PA所成的角即为AB与PA所成的角,即为∠PAB.在△PAB内,PB=PA=

,AB=2,利用余弦定理可知cos∠PAB=123456789101112136.(2016·常州模拟)在平行六面体ABCD—A1B1C1D1中,既与AB共面又与CC1共面的棱有_____条.答案解析5如图,有5条.其为BC,AA1,CD,C1D1,BB1.123456789101112137.如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形.∠ACB=90°,AC=6,BC=CC1=

,P是BC1上一动点,则CP+PA1的最小值为____.答案解析12345678910111213连结A1B,将△A1BC1与△CBC1同时展开形成一个平面四边形A1BCC1,则此时对角线CP+PA1=A1C达到最小,在等腰直角三角形△BCC1中,BC1=2,∠CC1B=45°,在△A1BC1中,A1B=

,A1C1=6,BC1=2,

=A1B2,即∠A1C1B=90°.对于展开形成的四边形A1BCC1,在△A1C1C中,C1C=

,A1C1=6,∠A1C1C=135°,由余弦定理有,CP+PA1=A1C=123456789101112138.如图是正四面体(各面均为正三角形)的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,①GH与EF平行;

②BD与MN为异面直线;③GH与MN成60°角;

④DE与MN垂直.以上四个命题中,正确命题的序号是_______.答案解析②③④把正四面体的平面展开图还原,如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.123456789101112139.(2015·浙江)如图,三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是___.答案解析12345678910111213如图所示,连结DN,取线段DN的中点K,连结MK,CK.∵M为AD的中点,∴MK∥AN,∴∠KMC为异面直线AN,CM所成的角.∵AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理求得AN=DN=CM=

,在Rt△CKN中,CK=在△CKM中,由余弦定理,得12345678910111213*10.(2017·泰州质检)如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是_____.①BM是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.答案解析③12345678910111213取DC中点F,连结MF,BF,MF∥A1D且MF=

A1D,FB∥ED且FB=ED,所以∠MFB=∠A1DE.由余弦定理可得MB2=MF2+FB2-2MF·FB·cos∠MFB是定值,所以M是在以B为圆心,MB为半径的球上,可得①②正确;由MF∥A1D与FB∥ED可得平面MBF∥平面A1DE,可得④正确;A1C在平面ABCD中的投影与AC重合,AC与DE不垂直,可得③不正确.1234567891011121311.如图,在正方体ABCD—A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1、H、O三点共线.证明12345678910111213连结BD,B1D1,如图.则BD∩AC=O,∵BB1綊DD1,∴四边形BB1D1D为平行四边形,又H∈B1D,B1D⊂平面BB1D1D,则H∈平面BB1D1D,∵平面ACD1∩平面BB1D1D=OD1,∴H∈OD1.即D1、H、O三点共线.1234

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论