版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
有理数加减法适用学科数学适用年级初一适用区域全国课时时长(分钟)60知识点同号两数相加,取相同的符号,并把绝对值相加.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.4、一个数同0相加,仍得这个数.1.有理数的加法法则(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两数相加得0.(3)一个数与0相加,仍得这个数.2.有理数的加法运算律(1)交换律两数相加,交换加数的位置,和不变.a+b=b+a(2)结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=a+(b+c)1.有理数的加法法则,是进行有理数加法运算的依据,运算步骤如下:(1)先确定和的符号;(2)再确定和的绝对值.2.运算规律是:同号的两个数(或多个数)相加,符号不变,只把它们的绝对值相加即可.如(+3)+(+4)=+(3+4)=+7.(-3)+(-4)+(-13)=-(3+4+13)=-20.异号两数相加,首先要确定和的符号.取两数中绝对值较大的加数的符号,作为和的符号,用较大的绝对值减去较小的绝对值的差,作为和的绝对值.如(+3)+(-4)=-(4-3)=-1.3.运用有理数加法的运算律,可以任意交换加数的位置.把交换律和结合律灵活运用,就可以把其中的几个数结合起来先运算,使整个计算过程简便而又不易出错.教学目标1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准地进行有理数的加法运算.2.通过有理数的加法运算,培养学生的运算能力.3.激发学生学习数学的兴趣。教学重点熟练应用有理数的加法法则进行加法运算.教学难点有理数的加法法则的理解.。教学过程一、复习预习一、加法
加法交换律:两个数相加,交换加数的位置,他们的和不变。即:a+b=b+a
其中a,b各表示任意一数.例如,7+8=8+7=15.
总结:多个数相加,任意交换相加的次序,其和不变.
加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)
其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).
总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
二、减法
在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.
在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.
如:a+(b-c)=a+b-c
a-(b+c)=a-b-a-(b-c)=a-b+c
在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
如:a+b-c=a+(b-c)
a-b+c=a-(b-c)
a-b-c=a-(b+c)
二、知识讲解考点11.有理数的加法法则,是进行有理数加法运算的依据,运算步骤如下:(1)先确定和的符号;(2)再确定和的绝对值.(3)同号两数相加,取相同的符号,并把绝对值相加.(4)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,(5)互为相反数的两个数相加得0.(6)一个数同0相加,仍得这个数.考点21、.运算规律是:同号的两个数(或多个数)相加,符号不变,只把它们的绝对值相加即可.如(+3)+(+4)=+(3+4)=+7.(-3)+(-4)+(-13)=-(3+4+13)=-20.异号两数相加,首先要确定和的符号.取两数中绝对值较大的加数的符号,作为和的符号,用较大的绝对值减去较小的绝对值的差,作为和的绝对值.如(+3)+(-4)=-(4-3)=-1.考点3运用有理数加法的运算律,可以任意交换加数的位置.把交换律和结合律灵活运用,就可以把其中的几个数结合起来先运算,使整个计算过程简便而又不易出错.考点4三、例题精析【例题1】【题干】计算(-3)+(-9).[答案]-12[解析】分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).解:(-3)+(-9)=-12.【例题2】【题干】计算5+(-14)【答案】-9【解析】分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)【例题3】【题干】计算(+16)+(-25)+(+24)+(-32).【答案】-17【解析】剖析:此小题逐个相加当然可以,但较麻烦.可以利用加法的交换律和结合律,正、负数分别结合,再相加.解:(+16)+(-25)+(+24)+(-32)=[(+16)+(+24)]+[(-25)+(-32)]=(+40)+(-57)=-17.【例题4】【题干】计算(-2.1)+(+3.75)+(+4)+(-3.75)+(+5)+(-4).【答案】2.9【解析】剖析:仔细观察算式,发现(+3.75)与(-3.75),(+4)与(-4)互为相反数,根据互为相反数的两个数相加得零.解:(-2.1)+(3.75)+(+4)+(-3.75)+(+5)+(-4)=[(-2.1)+(+5)]+[(+3.75)+(-3.75)]+[(+4)+(-4)]=2.9+0+0=2.9.三、课堂运用【基础】1、计算(-2.39)+(+3.57)+(-7.61)+(-1.57).【答案】-8【解析】剖析:此题把正、负数分别结合,并非简单算法.用“凑整法”,分别把(-2.39)与(-7.61),(+3.57)与(-1.57)相结合,较为简便.解:(-2.39)+(3.57)+(-7.61)+(-1.57)=[(-2.39)+(-7.61)]+[(+3.57)+(-1.57)]=(-10)+(+2)=-8.2.计算(+3)+(-5)+(-2)+(-32).【答案】-36【解析】解:(+3)+(-5)+(-2)+(-32)=[(+3)+(-2)]+[(-5)+(-32)]=(+1)+(-38)=-36.3.计算下列各题:(1)0.2+(-5.4)+(-0.6)+(+6);(2)(+3.15)+(-2.64)+(-6.31)+(+2.85)+(-9.36).【答案】-12.31【解析】剖析:(1)小题正数与正数、负数与负数分别结合,可使计算简便;(2)小题前三个数结合相加为零;(3)小题第一个数与第四个数、第二个数与第五个数相结合凑为整数.解:(1)0.2+(-5.4)+(-0.6)+(+6)=[0.2+(+6)]+[(-5.4)+(-0.6)]=6.2+(-6)=0.2(2)(+3.15)+(-2.64)+(-6.31)+(+2.85)+(-9.36)=[(+3.15)+(+2.85)]+[(-2.64)+(-9.36)]+(-6.31)=-12.31.[巩固]1、若|y-3|+|2x-4|=0,求3x+y的值.【答案】9【解析】剖析:根据绝对值的性质可以得到|y-3|≥0,|2x-4|≥0,所以只有当y-3=0且2x-4=0时,|y-3|+|2x-4|=0才成立.由y-3=0得y=3,由2x-4=0,得x=2.则3x+y易求.解:∵|y-3|≥0,|2x-4|≥0,又∵|y-3|+|2x-4|=0.∴y-3=0,y=32x-4=0,x=2.∴3x+y=3×2+3=9.2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+10、-3、+4、+2、-8、+13、-2、+12、+8、+5(1)问收工时距O地多远?(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?【答案】41、13.4(升)【解析】解:10-3+4+2-8+13-2+12+8+5=41把各数的绝对值相加=10+3+4+2+8+13+2+12+8+5=6767×0.2=13.4(升)3.某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。试用正、负数表示各月的利润,并算出该商场上半年的总利润额。【答案】答案:+13+12-0.7-0.8+12.5+10=46(万元)【解析】答案:+13+12-0.7-0.8+12.5+10=46(万元)[拔高]1、某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7(1)到晚上6时,出租车在什么位置。(2)若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗没多少升?【答案】解:(+10)+(-3)+(+4)+(+2)+(+8)+(+5)+(-2)+(-8)+(+12)+(-5)+(-7)=16,所以到晚上6时,出租车在停车场以东16千米处。(2)【解析】解:(+10)+(-3)+(+4)+(+2)+(+8)+(+5)+(-2)+(-8)+(+12)+(-5)+(-7)=16,所以到晚上6时,出租车在停车场以东16千米处。(2)2、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。列式计算,小明和小红谁为胜者?【答案】小红胜【解析】解:小明:,小红:所以小红胜四、课程小结本节课我们学习了哪些知识?你掌握了哪些哪些内容?本节课我们学习了1.有理数的加法法则,是进行有理数加法运算的依据,运算步骤如下:(1)先确定和的符号;(2)再确定和的绝对值.(3)同号两数相加,取相同的符号,并把绝对值相加.(4)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,(5)互为相反数的两个数相加得0.(6)一个数同0相加,仍得这个数.课后作业1、计算下列各式:(1)(2)(3)【答案】(1)原式=0+6+2+13-8=13(2)原式=(3)原式=【解析】(1)原式=0+6+2+13-8=13(2)原式=(3)原式=2、(1)已知:如图2-4①,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD;(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?并证明.解析:动画过点C作CF∥AB由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE)解析:动画过点C作CF∥AB,由平行线性质找到角的关系.(标注∠ABC+∠1=180°,∠2+∠CDE=180°)【答案】答案:证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠1=∠ABC,∠2=∠CDE.∵∠BCD=∠1+∠2,∴∠ABC+∠CDE=∠BCD;答案:∠ABC+∠BCD+∠CDE=360°.证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠ABC+∠1=180°,∠2+∠CDE=180°.∵∠BCD=∠1+∠2,∴∠ABC+∠BCD+∠CDE=360°.【解析】答案:证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠1=∠ABC,∠2=∠CDE.∵∠BCD=∠1+∠2,∴∠ABC+∠CDE=∠BCD;答案:∠ABC+∠BCD+∠CDE=360°.证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠ABC+∠1=180°,∠2+∠CDE=180°.∵∠BCD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家长如何利用家庭教育引导孩子合理消费
- 2024至2030年人造线花项目投资价值分析报告
- 2024至2030年三合一全自动乳胶硫化机项目投资价值分析报告
- 二零二五年度房产买卖代理合同范本:智能家居系统与精装修房与家具家电包销版3篇
- 2024年钨环项目可行性研究报告
- 2024版二手房买卖合同样本3篇
- 2024年设备购销与施工协作协议样书版
- 二零二五年度地下空间使用权及物业管理合作协议3篇
- 2025版住宅装修家具定制合同3篇
- 企业文化在提升服务质量中的作用研究
- 2023年小学五年级数学上学期期末水平测试试卷(天河区)
- 中考数学计算题100道
- 高压变频器整流变压器
- 集团资产重组实施方案
- 《新唯识论》儒佛会通思想研究
- 《减法教育》读书笔记思维导图PPT模板下载
- 慢性阻塞性肺疾病全球倡议(GOLD)
- 工程项目管理(第五版)丛培经 第七章
- GB/T 33195-2016道路交通事故车辆速度鉴定
- GB/T 15176-1994插入式电子元器件用插座及其附件总规范
- GB/T 14383-2008锻制承插焊和螺纹管件
评论
0/150
提交评论