下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次不等式解法·典型例题[]例3若ax2+bx-1<0的解集为{x|-1<x<2},则a=________,b=________.例4解下列不等式(1)(x-1)(3-x)<5-2x(2)x(x+11)≥3(x+1)2(3)(2x+1)(x-3)>3(x2+2)[]A.{x|x>0} B.{x|x≥1}C.{x|x>1} D.{x|x>1或x=0}[]A.(x-3)(2-x)≥0B.0<x-2≤1D.(x-3)(2-x)≤0[]例9已知集合A={x|x2-5x+4≤0}与B={x|x2-2ax+a+2例10解关于x的不等式(x-2)(ax-2)>0.例11若不等式ax2+bx+c>0的解集为{x|α<x<β}(0<α<β),求cx2+bx+a<0的解集.例13不等式|x2-3x|>4的解集是________.例14设全集U=R,A={x|x2-5x-6>0},B={x||x-5|<a}(a是常数),且11∈B,则[]A.(UA)∩B=RB.A∪(UB)=RC.(UA)∪(UB)=RD.A∪B=R
参考答案例1:例2分析求算术根,被开方数必需是非负数.解据题意有,x2-x-6≥0,即(x-3)(x+2)≥0,解在“两根之外”,所以x≥3或x≤-2.例3:分析依据一元二次不等式的解公式可知,-1和2是方程ax2+bx-1=0的两个根,考虑韦达定理.解依据题意,-1,2应为方程ax2+bx-1=0的两根,则由韦达定理知例4:分析将不等式适当化简变为ax2+bx+c>0(<0)形式,然后依据“解公式”给出答案(过程请同学们自己完成).答:(1){x|x<2或x>4}(4)R(5)R说明:不能使用解公式的时候要先变形成标准形式.例5:分析直接去分母需要考虑分母的符号,所以通常是接受移项后通分.∵x2>0,∴x-1>0,即x>1.选C.说明:本题也可以通过对分母的符号进行争辩求解.例6:故排解A、C、D,选B.两边同减去2得0<x-2≤1.选B.说明:留意“零”.例7:[(a-1)x+1](x-1)<0,依据其解集为{x|x<1或x>2}答选C.说明:留意本题中化“商”为“积”的技巧.例8:解先将原不等式转化为∴不等式进一步转化为同解不等式x2+2x-3<0,即(x+3)(x-1)<0,解之得-3<x<1.解集为{x|-3<x<1}.说明:解不等式就是逐步转化,将生疏问题化归为生疏问题.例9:分析先确定A集合,然后依据一元二次不等式和二次函数图像关解易得A={x|1≤x≤4}设y=x2-2ax+a+2(*)4a2-4(a+2)<0,解得-1<a<2.说明:二次函数问题可以借助它的图像求解.例10:分析不等式的解及其结构与a相关,所以必需分类争辩.解1°当a=0时,原不等式化为x-2<0其解集为{x|x<2};4°当a=1时,原不等式化为(x-2)2>0,其解集是{x|x≠2};从而可以写出不等式的解集为:a=0时,{x|x<2};a=1时,{x|x≠2};说明:争辩时分类要合理,不添不漏.例11:分析由一元二次函数、方程、不等式之间关系,一元二次不等式的解集实质上是用根来构造的,这就使“解集”通过“根”实现了与“系数”之间的联系.考虑使用韦达定理:解法一由解集的特点可知a<0,依据韦达定理知:∵a<0,∴b>0,c<0.解法二∵cx2+bx+a=0是ax2+bx+a=0的倒数方程.且ax2+bx+c>0解为α<x<β,说明:要在一题多解中熬炼自己的发散思维。例12:分析将一边化为零后,对参数进行争辩.进一步化为(ax+1-a)(x-1)<0.(1)当a>0时,不等式化为(2)a=0时,不等式化为x-1<0,即x<1,所以不等式解集为{x|x<1};综上所述,原不等式解集为:例13:分析可转化为(1)x2-3x>4或(2)x2-3x<-4两个一元二次不等式.答填{x|x<-1或x>4}.例14:分析由x2-5x-6>0得x<-1或x>6,即A={x|x<-1或x>6}由|x-5|<a得5-a<x<5+a,即B={x|5-a<x<5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东科学技术职业学院《数字电路基础》2023-2024学年第一学期期末试卷
- 广东金融学院《酒店空间设计》2023-2024学年第一学期期末试卷
- 广东行政职业学院《工程制图与数字化表达》2023-2024学年第一学期期末试卷
- 广东环境保护工程职业学院《艺术概论(二)》2023-2024学年第一学期期末试卷
- 广东东软学院《抗震与高层建筑结构设计》2023-2024学年第一学期期末试卷
- 广东创新科技职业学院《化工过程开发与设计》2023-2024学年第一学期期末试卷
- 《老字的其他用法》课件
- 《自发性气胸的诊治》课件
- 《线性代数课本》课件
- 广东财经大学《工程热力学(二)》2023-2024学年第一学期期末试卷
- GB/T 18488-2024电动汽车用驱动电机系统
- 装配式混凝土建筑预制叠合板、叠合梁识图
- 医疗科研数据管理制度
- 安徽省芜湖市弋江区2023-2024学年八年级上学期期末英语试题(含听力)
- 场地移交表完整版本
- JJG 693-2011可燃气体检测报警器
- 2024-2029年中国水利行业发展分析及发展前景与趋势预测研究报告
- 供电公司应急演练培训
- 高中英语U4-The-Words-That-Changed-A-Nation教学课件
- 年项目经理讲安全课
- 朱砂行业分析
评论
0/150
提交评论