2024年人教A版高二数学下册阶段测试试卷含答案_第1页
2024年人教A版高二数学下册阶段测试试卷含答案_第2页
2024年人教A版高二数学下册阶段测试试卷含答案_第3页
2024年人教A版高二数学下册阶段测试试卷含答案_第4页
2024年人教A版高二数学下册阶段测试试卷含答案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年人教A版高二数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、【题文】已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为()A.1B.3C.-4D.-82、【题文】若复数是纯虚数,则实数为()A.1B.C.0D.3、【题文】设.若的最小值为A.8B.4C.1D.4、【题文】在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5、某市16个交通路段中,在早高峰期间与7个路段比较拥堵,现从中任意选10个路段,用X表示这10个路段中交通比较拥堵的路段数,则P(X=4)=()A.B.C.D.6、如果(3x-)n的展开式中各项系数之和为8,则xndx的值是()A.B.C.D.1评卷人得分二、填空题(共5题,共10分)7、如图,在直三棱柱中,是上一动点,则的最小值是___________.8、_______.9、【题文】某校数学教研组有8名女教师和12名男教师,现要组织5名教师外出参观,如果按性别分层抽样产生,则参观团组成方法有____种。(用数字作答)10、设f(x)=ln(x+1)-x-ax,若f(x)在x=1处取得极值,则a的值为______.11、已知点P(x,y)在曲线(θ为参数)上,则的取值范围为______.评卷人得分三、作图题(共6题,共12分)12、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)13、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)14、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

15、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)16、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)17、分别画一个三棱锥和一个四棱台.评卷人得分四、解答题(共1题,共4分)18、已知是复数,和均为实数.(1)求复数(2)若复数在复平面内对应点在第一象限,求实数t的取值范围.评卷人得分五、计算题(共4题,共12分)19、1.(本小题满分12分)已知函数在处取得极值.(1)求实数a的值;(2)若关于x的方程在[,2]上恰有两个不相等的实数根,求实数b的取值范围;(3)证明:(参考数据:ln2≈0.6931).20、1.(本小题满分12分)分别是椭圆的左右焦点,直线与C相交于A,B两点(1)直线斜率为1且过点若成等差数列,求值(2)若直线且求值.21、已知a为实数,求导数22、已知f(x)=∫1x(4t3﹣)dt,求f(1﹣i)•f(i).评卷人得分六、综合题(共2题,共20分)23、(2015·安徽)设椭圆E的方程为+=1(ab0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足=2直线OM的斜率为24、已知f(x)=﹣3x2+a(6﹣a)x+6.参考答案一、选择题(共6题,共12分)1、C【分析】【解析】y=y′=x,

∴y′|x=4=4,y′|x=-2=-2,

点P的坐标为(4,8),点Q的坐标为(-2,2),

∴在点P处的切线方程为y-8=4(x-4),

即y=4x-8.

在点Q处的切线方程为y-2=-2(x+2),

即y=-2x-2,解得A(1,-4),则A点的纵坐标为-4.【解析】【答案】C2、D【分析】【解析】依题意可得,且解得故选D。【解析】【答案】D3、C【分析】【解析】答案应选B

由题设条件中的等比关系得出a+b=1,代入中,将其变为2+利用基本不等式就可得出其最小值。

解:因为3a?3b=3,所以a+b=1,=(a+b)()=2+≥2+2=4;

当且仅当=即a=b=时“=”成立;

故选择B.【解析】【答案】C4、D【分析】【解析】本题考查复数的运算。

解答:因为

横坐标大于零;纵坐标小于零;

故对应的点位于第四象限。【解析】【答案】D5、A【分析】【解答】解:由题意P(X=4)=

故选:A.

【分析】由题意本题是一个超几何分布的问题,P(X=4)即取出的10个村庄中交通不方便的村庄数为四,由公式算出概率即可6、B【分析】解:令x=1,得到(3-1)n=8;所以n=3;

所以xndx=x3dx=

故选:B.

利用赋值法求出n;然后计算定积分.

本题考查了二项展开式的项的系数以及定积分的计算;关键是利用赋值法求出n值.【解析】【答案】B二、填空题(共5题,共10分)7、略

【分析】试题分析:在图2中,连接由已知条件可求得因为所以将直角△和等腰直角△展开在同一平面内,如图,则由余弦定理得因为所以的最小值是空间距离的最小值,经常要通过图形展开,转化为平面图形问题来解决.考点:空间图形的折叠与展开及距离计算.【解析】【答案】8、略

【分析】【解析】

因为【解析】【答案】59、略

【分析】【解析】略【解析】【答案】616010、略

【分析】解:∵f(x)=ln(x+1)-x-ax;

又∵f(x)在x=1处取得极值;

∴解得

故答案为:.

求导利用x=1时的导数值为0;进而计算可得结论.

本题考查利用导数研究函数的极值,注意极值点和导数为零的点之间的关系,属于基础题.【解析】11、略

【分析】解:∵曲线的参数方程为(θ为参数);

∴x+2=cosθ;y=sinθ,将两个方程平方相加;

∴(x+2)2+y2=1;它在直角坐标系中表示圆心在(-2,0)半径为1的圆.如图.

的几何意义是表示原点与圆上一点P(x,y)连线的斜率,当过原点的直线与圆相切时,切线的斜率是

∴的取值范围为.

故答案为:.

根据曲线参数方程为(θ为参数),将曲线先化为普通方程,再利用的几何意义即可求出其范围.

此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.【解析】三、作图题(共6题,共12分)12、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.13、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.14、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

15、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.16、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.17、解:画三棱锥可分三步完成。

第一步:画底面﹣﹣画一个三角形;

第二步:确定顶点﹣﹣在底面外任一点;

第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.

画四棱可分三步完成。

第一步:画一个四棱锥;

第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;

第三步:将多余线段擦去.

【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、解答题(共1题,共4分)18、略

【分析】试题分析:(1)由于为实数,设为故根据和都是实数虚部都等于0,得到复数的代数形式,即可求出a,进而求出z.(II)根据上一问做出的复数的结果,代入复数利用复数的加减和乘方运算,写出代数的标准形式,根据复数对应的点在第一象限,写出关于实部大于0和虚部大于0,解不等式组,得到结果.【解析】

(1)∵为实数,设为∴(2分)∴为实数∴(5分)∴(6分)(2)(8分)∵对应点在第一象限,∴(l0分)解得:(12分)考点:复数代数形式的混合运算;复数的代数表示法及其几何意义.【解析】【答案】(1)(2)五、计算题(共4题,共12分)19、略

【分析】【解析】

(1)f'(x)=1+,由题意,得f'(1)=0Þa=02分(2)由(1)知f(x)=x-lnx∴f(x)+2x=x2+bóx-lnx+2x=x2+bóx2-3x+lnx+b=0设g(x)=x2-3x+lnx+b(x>0)则g'(x)=2x-3+=4分当x变化时,g'(x),g(x)的变化情况如下表。x(0,)(,1)1(1,2)2g'(x)+0-0+G(x)↗极大值↘极小值↗b-2+ln2当x=1时,g(x)最小值=g(1)=b-2,g()=b--ln2,g(2)=b-2+ln2∵方程f(x)+2x=x2+b在[,2]上恰有两个不相等的实数根高考+资-源-网由ÞÞ+ln2≤b≤28分(3)∵k-f(k)=lnk∴nk=2ó(n∈N,n≥2)设Φ(x)=lnx-(x2-1)则Φ'(x)=-=当x≥2时,Φ'(x)<0Þ函数Φ(x)在[2,+∞)上是减函数,∴Φ(x)≤Φ(2)=ln2-<0Þlnx<(x2-1)∴当x≥2时,∴>2[(1-)+(-)+(-)+(-)+()]=2(1+-)=.∴原不等式成立.12分'【解析】【答案】(1)a=0(2)+ln2≤b≤2(3)原不等式成立.20、略

【分析】【解析】

(1)设椭圆半焦距为c,则方程为设成等差数列由得高考+资-源-网解得6分(2)联立直线与椭圆方程:带入得12分【解析】【答案】(1)(2)21、解:【分析】【分析】由原式得∴22、解:f(x)=(t4+)|1x=x4+﹣2f(1﹣i)=(1﹣i)4+﹣2=+

f(i)=i4+﹣2=﹣1﹣i

f(1﹣i)f(i)=6+5i【分析】【分析】先根据定积分求出函数f(x)的解析式,然后分别求出f(1﹣i)与f(i)即可求出所求.六、综合题(共2题,共20分)23、(1){#mathml#}255

{#/mathml#};(2){#mathml#}x245+y29=1

{#/mathml#}【分析】【解答】1、由题设条件知,点M的坐标为(),又Kom=从而=进而得a=c==2b,故e==

2、由题设条件和(1)的计算结果可得,直线AB的方程为+=1,点N的坐标为(-),设点N关于直线AB的对称点S的坐标为(x1,),则线段NS的中点T的坐标为()又点T在直线AB上,且KNSKAB=-1从而可解得b=3,所以a=故圆E的方程为

【分析】椭圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论