2025年高考数学复习热搜题速递之概率(2024年7月)_第1页
2025年高考数学复习热搜题速递之概率(2024年7月)_第2页
2025年高考数学复习热搜题速递之概率(2024年7月)_第3页
2025年高考数学复习热搜题速递之概率(2024年7月)_第4页
2025年高考数学复习热搜题速递之概率(2024年7月)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)2025年高考数学复习热搜题速递之概率(2024年7月)一.选择题(共10小题)1.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14 B.π8 C.12 2.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110 B.15 C.310 3.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立 B.甲与丁相互独立 C.乙与丙相互独立 D.丙与丁相互独立4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3125.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13 B.12 C.23 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516 B.1132 C.2132 7.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X=4)<P(X=6),则p=()A.0.7 B.0.6 C.0.4 D.0.38.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.459.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.710 B.58 C.38 10.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.3二.填空题(共5小题)11.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.12.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=.13.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P(ξ=0)=,E(ξ)=.14.已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=.15.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为.三.解答题(共5小题)16.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?17.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得x=116i=116xi=9.97,s=116i=116用样本平均数x作为μ的估计值μ̂,用样本标准差s作为σ的估计值σ̂,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ﹣3σ,μ+3σ)之外的数据,用剩下的数据估计μ和σ(精确到附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,0.008≈0.0918.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?19.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.20.某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.

2025年高考数学复习热搜题速递之概率(2024年7月)参考答案与试题解析一.选择题(共10小题)1.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14 B.π8 C.12 【考点】几何概型.【专题】定义法;概率与统计.【答案】B【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=π则对应概率P=π故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.2.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110 B.15 C.310 【考点】古典概型及其概率计算公式;列举法计算基本事件数及事件发生的概率.【专题】计算题;集合思想;定义法;概率与统计.【答案】D【分析】先求出基本事件总数n=5×5=25,再用列举法求出抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件个数,由此能求出抽得的第一张卡片上的数大于第二张卡片上的数的概率.【解答】解:从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=10故选:D.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.3.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立 B.甲与丁相互独立 C.乙与丙相互独立 D.丙与丁相互独立【考点】相互独立事件和相互独立事件的概率乘法公式.【专题】转化思想;定义法;概率与统计;逻辑推理;数学运算.【答案】B【分析】分别列出甲、乙、丙、丁可能的情况,然后根据独立事件的定义判断即可.【解答】解:由题意可知,两点数和为8的所有可能为:(2,6),(3,5),(4,4),(5,3),(6,2),两点数和为7的所有可能为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),P(甲)=16,P(乙)=16,P(丙)=5A:P(甲丙)=0≠P(甲)P(丙),B:P(甲丁)=136=PC:P(乙丙)=136≠PD:P(丙丁)=0≠P(丙)P(丁),故选:B.【点评】本题考查相互独立事件的应用,要求能够列举出所有事件和发生事件的个数,属于中档题.4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【考点】相互独立事件和相互独立事件的概率乘法公式.【专题】概率与统计.【答案】A【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为C32故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13 B.12 C.23 【考点】几何概型.【专题】概率与统计.【答案】B【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P=20故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516 B.1132 C.2132 【考点】古典概型及其概率计算公式.【专题】定义法;概率与统计;数学运算.【答案】A【分析】基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C6则该重卦恰有3个阳爻的概率p=m故选:A.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X=4)<P(X=6),则p=()A.0.7 B.0.6 C.0.4 D.0.3【考点】离散型随机变量的均值(数学期望).【专题】计算题;方程思想;转化思想;综合法;概率与统计.【答案】B【分析】利用已知条件,转化为二项分布,利用方差转化求解即可.【解答】解:某群体中的每位成员使用移动支付的概率都为p,看作是独立重复事件,满足X~B(10,p),P(x=4)<P(X=6),可得C104p4(1-p)6<C10因为DX=2.4,可得10p(1﹣p)=2.4,解得p=0.6或p=0.4(舍去).故选:B.【点评】本题考查离散型离散型随机变量的期望与方差的求法,独立重复事件的应用,考查转化思想以及计算能力.8.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.45【考点】相互独立事件和相互独立事件的概率乘法公式.【专题】转化思想;综合法;概率与统计;数据分析.【答案】A【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.9.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.710 B.58 C.38 【考点】几何概型.【专题】综合法;概率与统计.【答案】B【分析】求出一名行人前25秒来到该路口遇到红灯,即可求出至少需要等待15秒才出现绿灯的概率.【解答】解:∵红灯持续时间为40秒,至少需要等待15秒才出现绿灯,∴一名行人前25秒来到该路口遇到红灯,∴至少需要等待15秒才出现绿灯的概率为2540故选:B.【点评】本题考查概率的计算,考查几何概型,考查学生的计算能力,比较基础.10.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.3【考点】古典概型及其概率计算公式.【专题】计算题;对应思想;定义法;概率与统计.【答案】D【分析】(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,根据概率公式计算即可,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,根据概率公式计算即可【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P=310(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率P=310故选:D.【点评】本题考查了古典概率的问题,采用排列组合或一一列举法,属于基础题.二.填空题(共5小题)11.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是0.18.【考点】相互独立事件和相互独立事件的概率乘法公式.【专题】计算题;方程思想;定义法;概率与统计.【答案】见试题解答内容【分析】甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.【点评】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.12.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=1.96.【考点】离散型随机变量的方差与标准差.【专题】计算题;转化思想;概率与统计.【答案】见试题解答内容【分析】判断概率满足的类型,然后求解方差即可.【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.【点评】本题考查离散性随机变量的期望与方差的求法,判断概率类型满足二项分布是解题的关键.13.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P(ξ=0)=13,E(ξ)=1【考点】离散型随机变量的均值(数学期望).【专题】对应思想;数学模型法;概率与统计;数学运算.【答案】P(ξ=0)=13,E(ξ)=【分析】【解法1】由题意知随机变量ξ的可能取值分别为0,1,2;根据题意分别求出对应的概率值,写出分布列,求出数学期望值;【解法2】由题意知随机变量ξ的可能取值为0,1,2;分别计算P(ξ=0)、P(ξ=1)和P(ξ=2),再求E(ξ)的值.【解答】解:【解法1】由题意知随机变量ξ的可能取值分别为0,1,2;ξ=0表示取到红球后(停止取球)还没有取到黄球,有以下两种情况:①第一次就取到红球(P1=1②第一次取到绿球、第二次取到红球(P2=1所以P(ξ=0)=P1+P2=1当ξ=1时,有以下三种情况:①第一次取到1个黄球为24=1②第一次取到1个黄球为24,第二次取到绿球为13,第三次取到红球为③第一次取到绿球为14,第二次取到黄球为23,第三次取到红球为所以P(ξ=1)=2P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)=1-1所以ξ的分布列为:ξ012P131313数学期望为E(ξ)=0×13+1×1【解法2】由题意知,随机变量ξ的可能取值为0,1,2;计算P(ξ=0)=CP(ξ=1)=CP(ξ=2)=A所以E(ξ)=0×13+1×1故答案为:13,1【点评】本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.14.已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=0.14.【考点】正态分布曲线的特点及曲线所表示的意义.【专题】计算题;整体思想;综合法;概率与统计;数学运算.【答案】0.14.【分析】利用正态分布曲线的对称性求解.【解答】解:∵随机变量X服从正态分布N(2,σ2),∴P(2<X≤2.5)+P(X>2.5)=0.5,∴P(X>2.5)=0.5﹣0.36=0.14,故答案为:0.14.【点评】本题主要考查了正态分布曲线的对称性,属于基础题.15.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为310【考点】古典概型及其概率计算公式.【专题】计算题;对应思想;定义法;概率与统计;数学运算.【答案】见试题解答内容【分析】从甲、乙等5名学生中随机选出3人,先求出基本事件总数,再求出甲、乙被选中包含的基本事件的个数,由此求出甲、乙被选中的概率.【解答】解:方法一:设5人为甲、乙、丙、丁、戊,从5人中选3人有以下10个基本事件:甲乙丙,甲乙丁,甲乙戊,甲丙丁,甲丙戊,甲丁戊,乙丙丁、乙丙戊,乙丁戊,丙丁戊;甲、乙被选中的基本事件有3个:甲乙丙,甲乙丁,甲乙戊;故甲、乙被选中的概率为310方法二:由题意,从甲、乙等5名学生中随机选出3人,基本事件总数C53甲、乙被选中,则从剩下的3人中选一人,包含的基本事件的个数C31根据古典概型及其概率的计算公式,甲、乙都入选的概率P=C【点评】本题主要考查古典概型及其概率计算公式,熟记概率的计算公式即可,属于基础题.三.解答题(共5小题)16.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【考点】离散型随机变量的均值(数学期望).【专题】计算题;转化思想;综合法;概率与统计.【答案】见试题解答内容【分析】(1)求出f(p)=C202p2(1-p)18,则f'((2)(i)由p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),再由X=20×2+25Y,即X=40+25Y,能求出E(X).(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,E(X)=490>400,从而应该对余下的产品进行检验.【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p)=C∴f'令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f(p)的最大值点p0=0.1.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.【点评】本题考查概率的求法及应用,考查离散型随机变量的数学期望的求法,考查是否该对这箱余下的所有产品作检验的判断与求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.17.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得x=116i=116xi=9.97,s=116i=116用样本平均数x作为μ的估计值μ̂,用样本标准差s作为σ的估计值σ̂,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ﹣3σ,μ+3σ)之外的数据,用剩下的数据估计μ和σ(精确到附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,0.008≈0.09【考点】正态分布曲线的特点及曲线所表示的意义.【专题】计算题;转化思想;数学模型法;概率与统计.【答案】见试题解答内容【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数x、样本标准差s估计μ̂、σ̂可知(μ̂-3σ̂,【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,由题意知X~B(16,0.0026),因为P(X=0)=C160×(1﹣0.9974)0×0.9974所以P(X≥1)=1﹣P(X=0)=0.0408,因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(μ̂-3σ̂,μ̂(ⅱ)由x=9.97,s≈0.212,得μ的估计值为μ̂=9.97,σ的估计值为零件的尺寸在(μ剔除(μ̂-115(16×9.97﹣9.22)=10.02因此μ的估计值为10.02.i=116xi2=16×0.2122+16×剔除(μ̂-115(1591.134﹣9.222﹣15×10.022)≈0.008因此σ的估计值为0.008≈0.09【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.18.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】离散型随机变量的均值(数学期望).【专题】计算题;转化思想;综合法;概率与统计.【答案】见试题解答内容【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=1125,P(X≤19)=1725.由此能确定满足P(X≤n)≥(Ⅲ)法一:由X的分布列得P(X≤19)=1725.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=(20100)2=P(X=17)=20P(X=18)=(40100)2+2(20100)2P(X=19)=2×P(X=20)=(20P(X=21)=2×P(X=22)=(20∴X的分布列为:X16171819202122P1466121(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)=1P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=1∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=1买19个所需费用期望:EX1=200×19×1725+(200×19+500)×15+(200×19+500×2)×225买20个所需费用期望:EX2=200×20×2225+(200×20+500)×225+(∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.19.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【考点】相互独立事件和相互独立事件的概率乘法公式.【专题】计算题;转化思想;综合法;概率与统计;数学运算.【答案】见试题解答内容【分析】(1)设双方10:10平后的第k个球甲获胜为事件Ak(k=1,2,3,…),则P(X=2)=P(A1A2)+P(A1A2)=P(A1)P(A2)+P(A1)(2)P(X=4且甲获胜)=P(A1A2A3A4)+P(A1A2A3A4)=P(A1)P(A2)P(A3)P(A4)+P(A1)P(A【解答】解:(1)设双方10:10平后的第k个球甲获胜为事件Ak(k=1,2,3,…),则P(X=2)=P(A1A2)+P(A1=P(A1)P(A2)+P(A1)P(A=0.5×0.4+0.5×0.6=0.5.(2)P(X=4且甲获胜)=P(A1A2A3A=P(A1)P(A2)P(A3)P(A4)+P(A1)P(A2)P(A3)P(A=0.5×0.6×0.5×0.4+0.5×0.4×0.5×0.4=0.1.【点评】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.20.某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【考点】离散型随机变量的均值(数学期望);离散型随机变量及其分布列.【专题】计算题;对应思想;综合法;概率与统计;数学运算.【答案】(1)X020100P0.20.320.48(2)为使累计得分的期望最大,小明应选择先回答B类问题.【分析】(1)由已知可得,X的所有可能取值为0,20,100,分别求出对应的概率即可求解分布列;(2)由(1)可得E(X),若小明先回答B类问题,记Y为小明的累计得分,Y的所有可能取值为0,80,100,分别求出对应的概率,从而可得E(Y),比较E(X)与E(Y)的大小,即可得出结论.【解答】解:(1)由已知可得,X的所有可能取值为0,20,100,则P(X=0)=1﹣0.8=0.2,P(X=20)=0.8×(1﹣0.6)=0.32P(X=100)=0.8×0.6=0.48,所以X的分布列为:X020100P0.20.320.48(2)由(1)可知小明先回答A类问题累计得分的期望为E(X)=0×0.2+20×0.32+100×0.48=54.4,若小明先回答B类问题,记Y为小明的累计得分,则Y的所有可能取值为0,80,100,P(Y=0)=1﹣0.6=0.4,P(Y=80)=0.6×(1﹣0.8)=0.12,P(Y=100)=0.6×0.8=0.48,则Y的期望为E(Y)=0×0.4+80×0.12+100×0.48=57.6,因为E(Y)>E(X),所以为使累计得分的期望最大,小明应选择先回答B类问题.【点评】本题主要考查离散型随机变量分布列及数学期望,考查运算求解能力,属于中档题.

考点卡片1.古典概型及其概率计算公式【知识点的认识】1.定义:如果一个试验具有下列特征:(1)有限性:每次试验可能出现的结果(即基本事件)只有有限个;(2)等可能性:每次试验中,各基本事件的发生都是等可能的.则称这种随机试验的概率模型为古典概型.*古典概型由于满足基本事件的有限性和基本事件发生的等可能性这两个重要特征,所以求事件的概率就可以不通过大量的重复试验,而只要通过对一次试验中可能出现的结果进行分析和计算即可.2.古典概率的计算公式如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m【解题方法点拨】1.注意要点:解决古典概型的问题的关键是:分清基本事件个数n与事件A中所包含的基本事件数.因此要注意清楚以下三个方面:(1)本试验是否具有等可能性;(2)本试验的基本事件有多少个;(3)事件A是什么.2.解题实现步骤:(1)仔细阅读题目,弄清题目的背景材料,加深理解题意;(2)判断本试验的结果是否为等可能事件,设出所求事件A;(3)分别求出基本事件的个数n与所求事件A中所包含的基本事件个数m;(4)利用公式P(A)=mn求出事件3.解题方法技巧:(1)利用对立事件、加法公式求古典概型的概率(2)利用分析法求解古典概型.2.列举法计算基本事件数及事件发生的概率【知识点的认识】1、等可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=m等可能条件下概率的特征:(1)对于每一次试验中所有可能出现的结果都是有限的;(2)每一个结果出现的可能性相等.2、概率的计算方法:(1)列举法(列表或画树状图),(2)公式法;列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果.列表法(1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法.(2)列表法的应用场合当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.树状图法(1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法.(2)运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.【解题方法点拨】典例1:将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=137144的内部,则实数A.(-518,+∞)B.(﹣∞,718)C.(-718,518)解析:对于a与b各有6中情形,故总数为36种设两条直线l1:ax+by=2,l2:x+2y=2平行的情形有a=2,b=4,或a=3,b=6,故概率为P=设两条直线l1:ax+by=2,l2:x+2y=2相交的情形除平行与重合即可,∵当直线l1、l2相交时b≠2a,图中满足b=2a的有(1,2)、(2,4)、(3,6)共三种,∴满足b≠2a的有36﹣3=33种,∴直线l1、l2相交的概率P=33∵点(P1,P2)在圆(x﹣m)2+y2=137∴(118-m)2+(1112)解得-518故选:D典例2:某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下等级12345频率0.05m0.150.35n(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.解析:(1)由频率分布表得0.05+m+0.15+0.35+n=1,即m+n=0.45.…(2分)由抽取的20个零件中,等级为5的恰有2个,得n=220所以m=0.45﹣0.1=0.35.…(5分)(2):由(1)得,等级为3的零件有3个,记作x1,x2,x3;等级为5的零件有2个,记作y1,y2.从x1,x2,x3,y1,y2中任意抽取2个零件,所有可能的结果为:(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2)共计10种.…(9分)记事件A为“从零件x1,x2,x3,y1,y2中任取2件,其等级相等”.则A包含的基本事件为(x1,x2),(x1,x3),(x2,x3),(y1,y2)共4个.…(11分)故所求概率为P(A)=3.几何概型【知识点的认识】1.定义:若一个试验具有下列特征:(1)每次试验的结果有无限多个,且全体结果可用一个有度量的几何区域来表示;(2)每次试验的各种结果是等可能的.那么这样的试验称为几何概型.2.几何概率:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的区域用A表示(A⊆Ω),则P(A)=A的度量Ω4.相互独立事件和相互独立事件的概率乘法公式【知识点的认识】1.相互独立事件:事件A(或B)是否发生,对事件B(或A)发生的概率没有影响,这样两个事件叫做相互独立事件.2.相互独立事件同时发生的概率公式:将事件A和事件B同时发生的事件即为A•B,若两个相互独立事件A、B同时发生,则事件A•B发生的概率为:P(A•B)=P(A)•P(B)推广:一般地,如果事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率之积,即:P(A1•A2…An)=P(A1)•P(A2)…P(An)3.区分互斥事件和相互独立事件是两个不同的概念:(1)互斥事件:两个事件不可能同时发生;(2)相互独立事件:一个事件的发生与否对另一个事件发生的概率没有影响.5.离散型随机变量及其分布列【知识点的认识】1、相关概念;(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示.(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.(3)连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量(4)离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.2、离散型随机变量(1)随机变量:在随机试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验结果的不同而变化的,这样的变量X叫做一个随机变量.随机变量常用大写字母X,Y,…表示,也可以用希腊字母ξ,η,…表示.(2)离散型随机变量:如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.3、离散型随机变量的分布列.(1)定义:一般地,设离散型随机变量X的所有可能值为x1,x2,…,xn;X取每一个对应值的概率分别为p1,p2,…,pn,则得下表:Xx1x2…xi…xnPp1p2…pi…pn该表为随机变量X的概率分布,或称为离散型随机变量X的分布列.(2)性质:①pi≥0,i=1,2,3,…,n;②p1+p2+…+pn=1.6.离散型随机变量的均值(数学期望)【知识点的认识】1、离散型随机变量的期望数学期望:一般地,若离散型随机变量ξ的概率分布为x1x2…xn…Pp1p2…pn…则称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望,简称期望.数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=pn,则有p1=p2=…=pn=1n,Eξ=(x1+x2+…+xn)×1期望的一个性质:若η=aξ+b,则E(aξ+b)=aEξ+b.2、离散型随机变量的方差;方差:对于离散型随机变量ξ,如果它所有可能取的值是x1,x2,…,xn,…,且取这些值的概率分别是p1,p2,…,pn…,那么,称为随机变量ξ的均方差,简称为方差,式中的EξDξ是随机变量ξ的期望.标准差:Dξ的算术平方根Dξ叫做随机变量ξ的标准差,记作.方差的性质:.方差的意义:(1)随机变量的方差的定义与一组数据的方差的定义式是相同的;(2)随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;(3)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.7.离散型随机变量的方差与标准差【知识点的认识】1、离散型随机变量的期望数学期望:一般地,若离散型随机变量ξ的概率分布为x1x2…xn…Pp1p2…pn…则称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望,简称期望.数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=pn,则有p1=p2=…=pn=1n,Eξ=(x1+x2+…+xn)×1期望的一个性质:若η=aξ+b,则E(aξ+b)=aEξ+b.2、离散型随机变量的方差;方差:对于离散型随机变量ξ,如果它所有可能取的值是x1,x2,…,xn,…,且取这些值的概率分别是p1,p2,…,pn…,那么,称为随机变量ξ的均方差,简称为方差,式中的EξDξ是随机变量ξ的期望.标准差:Dξ的算术平方根Dξ叫做随机变量ξ的标准差,记作.方差的性质:.方差的意义:(1)随机变量的方差的定义与一组数据的方差的定义式是相同的;(2)随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;(3)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.8.正态分布曲线的特点及曲线所表示的意义【知识点的认识】1.正态曲线及性质(1)正态曲线的定义函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(﹣∞,+(2)正态曲线的解析式①指数的自变量是x定义域是R,即x∈(﹣∞,+∞).②解析式中含有两个常数:π和e,这是两个无理数.③解析式中含有两个参数:μ和σ,其中μ可取任意实数,σ>0这是正态分布的两个特征数.④解析式前面有一个系数为12πσ,后面是一个以e2.正态分布(1)正态分布的定义及表示如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=abφμ,σ(x)dx,则称X的分布为正态分布,记作N(μ,(2)正态总体在三个特殊区间内取值的概率值①P(μ﹣σ<X≤μ+σ)=0.6826;②P(μ﹣2σ<X≤μ+2σ)=0.9544;③P(μ﹣3σ<X≤μ+3σ)=0.9974.3.正态曲线的性质正态曲线φμ,σ(x)=12πσe(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线x=μ对称;(3)曲线在x=μ处达到峰值12(4)曲线与x轴围成的图形的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x轴平移;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论