版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西百色市2025届高三第二次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,对任意的,,当时,,则下列判断正确的是()A. B.函数在上递增C.函数的一条对称轴是 D.函数的一个对称中心是2.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()A.9 B.5 C.2或9 D.1或53.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为()A. B. C. D.4.已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为()A. B. C. D.5.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是()A. B. C. D.6.若的二项展开式中的系数是40,则正整数的值为()A.4 B.5 C.6 D.77.等比数列若则()A.±6 B.6 C.-6 D.8.已知函数的定义域为,则函数的定义域为()A. B.C. D.9.设,,,则()A. B. C. D.10.复数的虚部为()A.—1 B.—3 C.1 D.211.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60 B.7月份的利润最大C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元12.已知不同直线、与不同平面、,且,,则下列说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本题共4小题,每小题5分,共20分。13.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为________.14.假如某人有壹元、贰元、伍元、拾元、贰拾元、伍拾元、壹佰元的纸币各两张,要支付贰佰壹拾玖(219)元的货款,则有________种不同的支付方式.15.若向量满足,则实数的取值范围是____________.16.已知双曲线的左右焦点为,过作轴的垂线与相交于两点,与轴相交于.若,则双曲线的离心率为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.18.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.(1)求椭圆C的方程;(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.19.(12分)已知分别是的内角的对边,且.(Ⅰ)求.(Ⅱ)若,,求的面积.(Ⅲ)在(Ⅱ)的条件下,求的值.20.(12分)在中,角、、的对边分别为、、,且.(1)若,,求的值;(2)若,求的值.21.(12分)已知椭圆()经过点,离心率为,、、为椭圆上不同的三点,且满足,为坐标原点.(1)若直线、的斜率都存在,求证:为定值;(2)求的取值范围.22.(10分)选修4-5:不等式选讲已知函数的最大值为3,其中.(1)求的值;(2)若,,,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【详解】,又,即,有且仅有满足条件;又,则,,函数,对于A,,故A错误;对于B,由,解得,故B错误;对于C,当时,,故C错误;对于D,由,故D正确.故选:D【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.2、B【解析】
根据渐近线方程求得,再利用双曲线定义即可求得.【详解】由于,所以,又且,故选:B.【点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.3、B【解析】
计算求半径为,再计算球体积和圆锥体积,计算得到答案.【详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.4、A【解析】
根据直线:过双曲线的一个焦点,得,又和其中一条渐近线平行,得到,再求双曲线方程.【详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,,所以双曲线方程为.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.5、B【解析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.【详解】解:函数,,为的零点,为图象的对称轴,,且,、,,即为奇数①.在,单调,,②.由①②可得的最大值为1.当时,由为图象的对称轴,可得,,故有,,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B.【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.6、B【解析】
先化简的二项展开式中第项,然后直接求解即可【详解】的二项展开式中第项.令,则,∴,∴(舍)或.【点睛】本题考查二项展开式问题,属于基础题7、B【解析】
根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.8、A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.9、A【解析】
先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.10、B【解析】
对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.11、D【解析】
直接根据折线图依次判断每个选项得到答案.【详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.12、C【解析】
根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
根据圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),可得,进而可求出的值【详解】解:设圆柱底面圆的半径为,圆柱的高为,由题意知,解得.故答案为:3.【点睛】本题主要考查了圆柱的体积公式.只要能看懂题目意思,结合方程的思想即可求出结果.14、1【解析】
按照个位上的9元的支付情况分类,三个数位上的钱数分步计算,相加即可.【详解】9元的支付有两种情况,或者,①当9元采用方式支付时,200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;②当9元采用方式支付时:200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;所以总的支付方式共有种.故答案为:1.【点睛】本题考查了分类加法计数原理和分步乘法计数原理,属于中档题.做题时注意分类做到不重不漏,分步做到步骤完整.15、【解析】
根据题意计算,解得答案.【详解】,故,解得.故答案为:.【点睛】本题考查了向量的数量积,意在考查学生的计算能力.16、【解析】
由已知可得,结合双曲线的定义可知,结合,从而可求出离心率.【详解】解:,,又,则.,,,即解得,即.故答案为:.【点睛】本题考查了双曲线的定义,考查了双曲线的性质.本题的关键是根据几何关系,分析出.关于圆锥曲线的问题,一般如果能结合几何性质,可大大减少计算量.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】
(1)求导可得在上,在上,所以函数在时,取最小值,由函数只有一个零点,观察可知则有,即可求得结果.(2)由(1)可知为最小值,则构造函数(),求导借助基本不等式可判断为减函数,即可得,即则有,由已知可得,由,可知,因为时,为增函数,即可得证得结论.【详解】(1)().因为,所以,令得,,且,,在上;在上;所以函数在时,取最小值,当最小值为0时,函数只有一个零点,易得,所以,解得.(2)由(1)得,函数,设(),则,设(),则,,所以为减函数,所以,即,所以,即,又,所以,又当时,为增函数,所以,即.【点睛】本题考查借助导数研究函数的单调性及最值,考查学生分析问题的能力,及逻辑推理能力,难度困难.18、(1)(2)k1+k2为定值0,见解析【解析】
(1)利用已知条件直接求解,得到椭圆的方程;(2)设直线在轴上的截距为,推出直线方程,然后将直线与椭圆联立,设,利用韦达定理求出,然后化简求解即可.【详解】(1)由椭圆过点(0,),则,又a+b=3,所以,故椭圆的方程为;(2),证明如下:设直线在轴上的截距为,所以直线的方程为:,由得:,由得,设,则,所以,又,所以,故.【点睛】本题主要考查了椭圆的标准方程的求解,直线与椭圆的位置关系的综合应用,考查了方程的思想,转化与化归的思想,考查了学生的运算求解能力.19、(Ⅰ);(Ⅱ);(Ⅲ).【解析】
(Ⅰ)由已知结合正弦定理先进行代换,然后结合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后结合三角形的面积公式可求;(Ⅲ)结合二倍角公式及和角余弦公式即可求解.【详解】(Ⅰ)因为,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因为,所以;(Ⅲ)由于,.所以.【点睛】本题主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面积公式的综合应用,意在考查学生对这些知识的理解掌握水平.20、(1);(2).【解析】
(1)利用余弦定理得出关于的二次方程,结合,可求出的值;(2)利用两角和的余弦公式以及诱导公式可求出的值,利用同角三角函数的基本关系求出的值,然后利用二倍角的正切公式可求出的值.【详解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因为,所以,从而,所以.【点睛】本题考查利用余弦定理解三角形,同时也考查了两角和的余弦公式、同角三角函数的基本关系以及二倍角公式求值,考查计算能力,属于中等题.21、(1)证明见解析;(2).【解析】
(1)首先根据题中条件求出椭圆方程,设、、点坐标,根据利用坐标表示出即可得证;(2)设直线方程,再与椭圆方程联立利用韦达定理表示出,即可求出范围.【详解】(1)依题有,所以椭圆方程为.设,,,由为的重心,;又因为,,,,(2)当的斜率不存在时:,,,代入椭圆得,,,当的斜率存在时:设直线为,这里,由,,根据韦达定理有,,,故,代入椭圆方程有,又因为,综上,的范围是.【点睛】本题主要考查了椭圆方程的求解,三角形重心的坐标关系,直线与椭圆所交弦长,属于一般题.22、(1)(2)见解析【解析】
(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab≥1,再构造函数利用导数判断单调性求出最小值可证.【详解】(1)∵,∴.∴当时,取得最大值.∴.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高考地理一轮复习专练16高低压系统与锋面气旋含解析新人教版
- 小学全环境立德树人工作方案
- 证券法期末考试题及答案
- 2024年海南政法职业学院高职单招语文历年参考题库含答案解析
- 2024年浙江安防职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年陇西县第二人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年阳江市中西医结合医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年河南林业职业学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年闽侯县第二医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年长治市高新技术开发区中心医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 复旦大学留学生(本科)汉语入学考试大纲
- 送达地址确认书(完整版)
- 试讲 关注合理营养与食品安全课件
- 2022年同等学力人员申请硕士学位日语水平统一考试真题
- 长距离输气管线工艺设计方案
- 北师大版小学五年级上册数学第六单元《组合图形的面积》单元测评培优试卷
- 用特征方程求数列的通项
- 甲醇浓度密度对照表0~40
- 四年级奥数题(一)找规律
- 会计学原理课后习题与答案
- 县领导在新录用公务员培训班开班典礼上的讲话
评论
0/150
提交评论