版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八上数学:期末专项复习之解答压轴专项训练(30道)1.(2021•西青区期末)如图,△ABC中,A1,A2,A3,…,An为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…(1)完成下表:连接个数出现三角形个数(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到An,则图中共有个三角形.2.(2021•太仓市期末)已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.3.(2021•镇平县期末)已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.(1)直接写出c及x的取值范围;(2)若x是小于18的偶数①求c的长;②判断△ABC的形状.4.(2021•镇江期末)直线AB、CD为平面内两条直线,点M、点N分别在直线AB、CD上,点P(P不在直线AB、CD上)为平面内一动点.(1)如图1,若AB、CD相交于点O,∠MON=40°;①当点P在△OMN内部时,求证:∠MPN﹣∠OMP﹣∠ONP=40°;②小芳发现,当点P在∠MON内部运动时,∠MPN、∠OMP、∠ONP还存在其它数量关系,这种数量关系是;③探究,当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有种;(2)如图2,若AB∥CD,请直接写出∠MPN与∠AMP、∠CNP之间存在的所有数量关系是.5.(2021•高明区校级期末)如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.6.(2021•甘井子区期末)如图1,在△ABC与△BDE中,∠ABC=∠BDE=90°,BC=DE,AB=BD,M、M′分别为AB、BD中点.(1)探索CM与EM′有怎样的数量关系?请证明你的结论;(2)如图2,连接MM′并延长交CE于点K,试判断CK与EK之间的数量关系,并说明理由.7.(2021•泰州期末)已知在四边形ABCD中,∠A=x,∠C=y,(0°<x<180°,0°<y<180°).(1)∠ABC+∠ADC=(用含x、y的代数式直接填空);(2)如图1,若x=y=90°.DE平分∠ADC,BF平分∠CBM,请写出DE与BF的位置关系,并说明理由;(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角.①若x+y=120°,∠DFB=20°,试求x、y.②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在.8.(2021•娄底期末)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?9.(2021•浦东新区期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.10.(2021•婺城区校级期末)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是、.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是、.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.11.(2021•香坊区期末)已知:点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M、N分别是射线AE、AF上的点,且PM=PN.(1)当点M在线段AB上,点N在线段AC的延长线上时(如图1),求证:BM=CN;(2)在(1)的条件下,AM+AN=AC;(3)当点M在线段AB的延长线上时(如图2),若AC:PC=2:1,PC=4,求四边形ANPM的面积.12.(2021•常熟市期末)如图,△ABC的角平分线AD、BE相交于点P,(1)在图1中,分别画出点P到边AC、BC、BA的垂线段PF、PG、PH,这3条线段相等吗?为什么?(2)在图2中,∠ABC是直角,∠C=60°,其余条件都不变,请你判断并写出PE与PD之间的数量关系,并说明理由.13.(2021•罗湖区校级期末)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.14.(2021•香洲区校级期末)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.15.(2021•临沂期末)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,﹣3),C(4,﹣2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(a,b)经过上述两次变换,那么对应A2C2上的点P2的坐标是.16.(2021•罗湖区校级期末)如图(1),方格图中每个小正方形的边长为1,点A、B、C都是格点.(1)画出△ABC关于直线MN对称的△A1B1C1;(2)写出AA1的长度;(3)如图(2),A、C是直线MN同侧固定的点,B是直线MN上的一个动点,在直线MN上画出点B,使AB+BC最小.17.(2021•太原期末)数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出两个不同类型且具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(说明:要求画出的两个三角形不相似,且不是等腰三角形.)(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.18.(2021•东营期末)根据以下10个乘积,回答问题:11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;20×20.(1)试将以上各乘积分别写成一个“□2﹣∅2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用a1b1,a2b2,…,anbn表示n个乘积,其中a1,a2,a3,…,an,b1,b2,b3,…,bn为正数,a1<a2<a3<…<an,b1>b2>b3>…>bn,且a1+b1=a2+b2=a3+b3=…=an+bn,试由(1)、(2)猜测一个一般性的结论.(不要求证明)19.(2021•浙江期末)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?20.(2021•太原期末)阅读下列材料,解决相应问题:“友好数对”已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“友好数对”.例如43×68=34×86=2924,所以43和68与34和86都是“友好数对”.(1)36和84“友好数对”.(填“是”或“不是”)(2)为探究“友好数对”的本质,可设“友好数对”中一个数的十位数字为a,个位数字为b,且a≠b;另一个数的十位数字为c,个位数字为d,且c≠d,则a,b,c,d之间存在一个等量关系,其探究和说理过程如下,请你将其补充完整.解:根据题意,“友好数对”中的两个数分别表示为10a+b和10c+d,将它们各自的十位数字和个位数字交换位置后两个数依次表示为和.因为它们是友好数对,所以(10a+b)(10c+d)=.即a,b,c,d的等量关系为:.(3)请从下面A、B两题中任选一题作答,我选择题.A.请再写出一对“友好数对”,与本题已给的“友好数对”不同.B.若有一个两位数,十位数字为x+2,个位数字为x,另一个两位数,十位数字为x+2,个位数字为x+8.且这两个数为“友好数对”,直接写出这两个两位数.21.(2021•九龙坡区期末)甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为元;(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是a+b2请问甲、乙两商场,哪个商场的提价较多?请说明理由.22.(2021•天津期末)某企业有九个生产车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A、B两组检验员,其中A组有8名检验员.他们先用两天将第一、二两个车间的成品检验完毕后,再去检验第三、四两个车间所有成品,又用去了三天时间;同时,用这五天时间,B组检验员也检验完余下的五个车间的成品,如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品.(1)用a、b表示B组检验员检验的成品总数;(2)求B组检验员的人数.23.(2021•遂宁期末)如图,小刚家、王老师家和学校在一条直路上,小刚与王老师家相距3.5千米,王老师家与学校相距0.5千米.近来,小刚父母出差,如果王老师骑自行车到小刚家接小刚上学,就比平时走路上班多用24分钟.已知骑自行车的速度是步行速度的3倍.(1)问:王老师骑自行车的速度是多少千米/小时?(2)为了节约时间,王老师与小刚约定每天7:35从家里同时出发,小刚走路,王老师骑车,遇到小刚后,立即搭小刚到校.如果小刚和王老师走路的速度一样,王老师骑车的速度不变,请问他们能否在8:00钟前赶到学校?说明理由.24.(2021•泉州期末)周末某班组织登山活动,同学们分甲,乙两组从山脚下沿着一条道路同时向山顶进发,设甲,乙两组行进同一路段所用的时间之比2:3.(1)直接写出甲、乙两组行进速度之比;(2)当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米,试问山脚离山顶的路程有多远?(3)在题(2)所述内容(除最后的问句处)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇,请你先根据以上情景提出一个相应的问题,再给予解答.(要求:①问题的提出不需再增添其它条件;②问题的解决必须利用上述情景提供的所有书面条件.)25.(2021•河南期末)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.26.(2021•昌平区期末)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=1(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=1(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=127.(2021•朝阳区校级期末)如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠C=∠E=90°,∠EDF=30°,∠ABC=40°.如图2,连接CD,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0°<α<180°).(1)∠CDA的度数为85°.(2)如图3,在旋转过程中,当顶点C在△DEF内部时,边DF,DE分别交BC,AC的延长线于点M,N.①求α的度数范围;②∠1与∠2度数的和是否变化?若不变,请求出∠1与∠2的度数和;若变化,请说明理由.28.(2021•玉溪期末)平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.29.(2021•揭阳期末)探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.30.(2021•新华区校级期末)直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).(1)如图1,已知AE、BE分别是∠BAO和∠ABO的角平分线,①当∠ABO=60°时,求∠AEB的度数;②点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况:若不发生变化,试求出∠AEB的大小;(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,请直接写出∠ABO的度数.
参考答案及解析1.(2021•西青区期末)如图,△ABC中,A1,A2,A3,…,An为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…(1)完成下表:连接个数出现三角形个数(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到An,则图中共有12(n+1)(n+2)【解题思路】(1)根据图形,可以分析:数三角形的个数,其实就是数AC上线段的个数.所以当上面有3个分点时,有6+4=10;4个分点时,有10+5=15;5个分点时,有15+6=21;6个分点时,有21+7=28;7个分点时,有28+8=36;(2)若出现45个三角形,根据上述规律,则有8个分点;(3)若有n个分点,则有1+2+3+…+n+1=1【解答过程】解:(1)连接个数123456出现三角形个数3610152128(2)8个点;(3)1+2+3+…+(n+1)=1=1故答案为122.(2021•太仓市期末)已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是20°;②当∠BAD=∠ABD时,x=120;当∠BAD=∠BDA时,x=60.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.【解题思路】利用角平分线的性质求出∠ABO的度数是关键,分类讨论的思想.【解答过程】解:(1)①∵∠MON=40°,OE平分∠MON,∴∠AOB=∠BON=20°,∵AB∥ON,∴∠ABO=20°,②∵∠BAD=∠ABD,∴∠BAD=20°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°,∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°;故答案为:①20°;②120,60;(2)①当点D在线段OB上时,∵OE是∠MON的角平分线,∴∠AOB=1∵AB⊥OM,∴∠AOB+∠ABO=90°,∴∠ABO=70°,若∠BAD=∠ABD=70°,则x=20若∠BAD=∠BDA=1若∠ADB=∠ABD=70°,则∠BAD=180°﹣2×70°=40°,∴x=50②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20、35、50、125.3.(2021•镇平县期末)已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.(1)直接写出c及x的取值范围;(2)若x是小于18的偶数①求c的长;②判断△ABC的形状.【解题思路】(1)利用三角形三边关系进而得出c的取值范围,进而得出答案;(2)①根据偶数的定义,以及x的取值范围即可求解;②利用等腰三角形的判定方法得出即可.【解答过程】解:(1)因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.(2)①因为周长为小于18的偶数,所以x=16或x=14.当x为16时,c=6;当x为14时,c=4.②当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上,△ABC是等腰三角形.4.(2021•镇江期末)直线AB、CD为平面内两条直线,点M、点N分别在直线AB、CD上,点P(P不在直线AB、CD上)为平面内一动点.(1)如图1,若AB、CD相交于点O,∠MON=40°;①当点P在△OMN内部时,求证:∠MPN﹣∠OMP﹣∠ONP=40°;②小芳发现,当点P在∠MON内部运动时,∠MPN、∠OMP、∠ONP还存在其它数量关系,这种数量关系是∠MPN+∠OMP+∠ONP=320°;③探究,当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有5种;(2)如图2,若AB∥CD,请直接写出∠MPN与∠AMP、∠CNP之间存在的所有数量关系是∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN=360°.【解题思路】(1)①延长OP至点E,利用三角形的外角性质和整体思想求证;②分类讨论,点P在△OMN内部和外部进行讨论;③直线MN和直线AB、直线CD将平面分为7个部分,讨论点P在∠MON外部的5个部分进行讨论;(3)直线MN和直线AB、直线CD将平面分为6个部分,讨论点P在这6个部分时三个角之间的关系.【解答过程】(1)①证明:如图1,延长OP至点E,∵∠MPE和∠NPE分别是△MOP和△NOP的外角,∴∠MPE=∠MOP+∠OMP,∠NPE=∠NOP+∠ONP,∴∠MPE+∠NPE=∠MOP+∠NOP+∠OMP+∠ONP,即∠MPN=∠MON+∠OMP+∠ONP,∴∠MPN﹣∠OMP﹣∠ONP=∠MON=40°.②解:如图2,当点P在∠MON内部,且在直线MN右侧时,延长OP至点E,则∠MPO+∠MOP+∠OMP=180°,∠NPO+∠NOP+∠ONP=180°,∴∠MPO+∠NPO+∠MOP+∠NOP+∠OMP+∠ONP=360°,即∠MPN+∠MON+∠OMP+∠ONP=360°,∴∠MPN+∠OMP+∠ONP=360°﹣∠MON=360°﹣40°=320°.故答案为:∠MPN+∠OMP+∠ONP=320°.③解:如图3,当点P落在直线MN左侧,且在∠COB内部时,记PN与AB的交点为点E,∵∠OEP是△MEP和△OEN的外角,∴∠OEP=∠MPN+∠OMP,∠OEP=∠MON+∠ONP,∴∠MPN+∠OMP=∠MON+∠ONP,即∠MPN+∠OMP﹣∠ONP=∠MON,∴∠MPN+∠OMP﹣∠ONP=40°;如图4,当点P落在直线MN的右侧,且在∠COB内部时,记PN与AB的交点为点E,∵∠OMP是△MEP的外角,∠OEP是△OEN的外角,∴∠OMP=∠MPN+∠OEP,∠OEP=∠MON+∠ONP,∴∠OMP=∠MPN+∠MON+∠ONP,即∠OMP﹣∠ONP﹣∠MPN=∠MON,∴∠OMP﹣∠ONP﹣∠MPN=40°;如图5,当点P落在直线MN左侧,且在∠AOD内部时,记PM与CD的交点为点F,∵∠OFP是△MOF和△FNP的外角,∴∠OFP=∠MON+∠OMP,∠OFP=∠MPN+∠ONP,∴∠MON+∠OMP=∠MPN+∠ONP,即∠MPN+∠ONP﹣∠OMP=∠MON,∴∠MPN+∠ONP﹣∠OMP=40°;如图6,当点P落在直线MN右侧,且在∠AOD内部时,记PM与CD的交点为点F,∵∠OFP是△MOF的外角,∠ONP是△FNP的外角,∴∠OFP=∠MON+∠OMP,∠ONP=∠MPN+∠OFP,∴∠ONP=∠MPN+∠MON+∠OMP,∴∠MPN+∠OMP+∠ONP=∠MON=40°;如图7,当点P落在∠AOC内部时,延长PO至点G,∵∠MOG和∠NOG分别是△MOP和△NOP的外角,∴∠MOG=∠MPO+∠PMO,∠NOG=∠NPO+∠PNO,∴∠MOG+∠NOG=∠MPO+∠NPO+∠PMO+∠PNO,即∠MON=∠MPN+∠PMO+∠PNO,∴∠MPN+∠PMO+∠PNO=40°,综上所述:当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有5种.(2)解:如图8,当点P在直线MN右侧,且在直线AB上方时,记PN与直线AB的交点为H,∵AB∥CD,∴∠AHP=∠CNP,∵∠AMP是△MPH的外角,∴∠AMP=∠MPN+∠AHP,∴∠AMP=∠MPN+∠CNP;如图9,当点P在直线MN的左侧,且在直线AB上方时,记PN与直线AB的交点为H,∵AB∥CD,∴∠AHP=∠CNP,∵∠AHP是△MPH的外角,∴∠AHP=∠MPN+∠AMP,∴∠CNP=∠MPN+∠AMP;如图10,当点P在直线MN右侧,且在直线AB和直线CD之间时,∵AB∥CD,∴∠BMP+∠PMN+∠PNM+∠PND=180°,∵∠BMP=180°﹣∠AMP,∠PND=180°﹣∠PNC,∠PMN+∠PNM=180°﹣∠MPN,∴∠AMP+∠CNP+MPN=360°,如图11,当点P在直线MN左侧,且在直线AB和直线CD之间时,∵AB∥CD,∴∠AMP+∠PMN+∠CNP+∠PNM=180°,∵∠PMN+∠PNM=180°﹣∠MPN,∴∠AMP+∠CNP=∠MPN,如图12,当点P在直线MN右侧,且在直线CD下方时,记PN与CD的交点为H,∵AB∥CD,∴∠AMP=∠CHP,∵∠CNP是△NHP的外角,∴∠CNP=∠CHP+∠MPN,∴∠CNP=∠AMP+∠MPN;如图13,当点P在直线MN的左侧,且在直线CD下方时,记PN与CD的交点为H,∵AB∥CD,∴∠AMP=∠CHP,∵∠CHP是△PHN的外角,∴∠CHP=∠MPN+∠CNP,∴∠AMP=∠MPN+∠CNP,综上所述,当AB∥CD时,∠MPN与∠AMP、∠CNP之间存在的所有数量关系是:∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN=360°.故答案为:∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN=360°.5.(2021•高明区校级期末)如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.【解题思路】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠1+∠2,进而求出∠BPC即可解决问题;(2)根据三角形的外角性质分别表示出∠MBC与∠BCN,再根据角平分线的性质可求得∠CBQ+∠BCQ,最后根据三角形内角和定理即可求解;(3)在△BQE中,由于∠Q=90°−12∠A,求出∠E【解答过程】(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°−12(∠ABC+∠ACB)=180°(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=1=1=1=90°+1∴∠Q=180°﹣(90°+12∠A)=90°(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=1∵∠EBQ=∠EBC+∠CBQ=12∠ABC=1如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°−1④∠E=2∠Q,则12∠A=2(90°−综上所述,∠A的度数是90°或60°或120°.6.(2021•甘井子区期末)如图1,在△ABC与△BDE中,∠ABC=∠BDE=90°,BC=DE,AB=BD,M、M′分别为AB、BD中点.(1)探索CM与EM′有怎样的数量关系?请证明你的结论;(2)如图2,连接MM′并延长交CE于点K,试判断CK与EK之间的数量关系,并说明理由.【解题思路】(1)根据线段中点的概念和已知的AB=BD,得BM=DM′;在△BCM与△DEM′中,∠ABC=∠BDE=90°,BC=DE,AB=BD,可得△BCM≌△DEM′,则CM=EM′;(2)延长MK至L,使KL=MM',连接LE,先证明△CMK≌△EM′L后即可得出答案;【解答过程】解:(1)CM=EM′.证明:根据线段中点的概念和已知的AB=BD,得BM=DM′;在△BCM与△DEM′中,BC=DE∠CBM=∠EDM'∴Rt△BCM≌Rt△DEM′(SAS),∴CM=EM′;(2)CK=KE.理由如下:如图2,延长MK至L,使KL=MM',连接LE,则KL+KM′=MM'+KM′,即KM=LM′,由(1)可知CM=EM′,∵BD=AB,M是AB的中点,M'是BD的中点,∴BM=BM′,∴∠BMM′=∠BM′M,由(1)知Rt△BCM≌Rt△DEM′,∴∠BMC=∠EM′D,∴∠CMK=∠KM′E,在△CMK和△EM′L中MC=M'E∠CMK=∠LM'E∴△CMK≌△EM′L(SAS),∴CK=EL,又∵∠CKM=∠LKE=∠KLE,∴KE=LE,∴CK=KE.7.(2021•泰州期末)已知在四边形ABCD中,∠A=x,∠C=y,(0°<x<180°,0°<y<180°).(1)∠ABC+∠ADC=360°﹣x﹣y(用含x、y的代数式直接填空);(2)如图1,若x=y=90°.DE平分∠ADC,BF平分∠CBM,请写出DE与BF的位置关系,并说明理由;(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角.①若x+y=120°,∠DFB=20°,试求x、y.②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在.【解题思路】(1)利用四边形内角和定理进行计算,得出答案即可;(2)利用角平分线的性质结合三角形外角的性质得出DE与BF的位置关系即可;(3)①利用角平分线的性质以及三角形内角和定理,得出∠DFB=12y【解答过程】解:(1)∵∠A+∠ABC+∠C+∠ADC=360°,∠A=x,∠C=y,∴∠ABC+∠ADC=360°﹣x﹣y.故答案为:360°﹣x﹣y.(2)DE⊥BF.理由:如图1,∵DE平分∠ADC,BF平分∠MBC,∴∠CDE=12∠ADC,∠CBF又∵∠CBM=180°﹣∠ABC=180°﹣(180°﹣∠ADC)=∠ADC,∴∠CDE=∠CBF,又∵∠DGC=∠BGE,∴∠BEG=∠C=90°,∴DE⊥BF;(3)①由(1)得:∠CDN+∠CBM=360°﹣(360°﹣x﹣y)=x+y,∵BF、DF分别平分∠CBM、∠CDN,∴∠CDF+∠CBF=1如图2,连接DB,则∠CBD+∠CDB=180°﹣y,∴∠FBD+∠FDB=180°﹣y+12(x+y)=180°−1∴∠DFB=12y解方程组:x+y=120°1可得:x=40°y=80°②当x=y时,∠FBD+∠FDB=180°−12y∴∠ABC、∠ADC相邻的外角平分线所在直线互相平行,此时,∠DFB不存在.8.(2021•娄底期末)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【解题思路】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【解答过程】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,BD=PC∠ABC=∠ACB∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=15故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为1549.(2021•浦东新区期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.【解题思路】(1)延长BD交CE于F,易证△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根据∠AEC+∠ACE=90°,可得∠ABD+∠AEC=90°,即可解题;(2)延长BD交CE于F,易证∠BAD=∠EAC,即可证明△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根据∠ABC+∠ACB=90°,可以求得∠CBF+∠BCF=90°,即可解题.【解答过程】证明:(1)延长BD交CE于F,在△EAC和△DAB中,AE=AD∠EAC=∠DAB∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠AEC+∠ACE=90°,∴∠ABD+∠AEC=90°,∴∠BFE=90°,即EC⊥BD;(2)延长BD交CE于F,∵∠BAD+∠CAD=90°,∠CAD+∠EAC=90°,∴∠BAD=∠EAC,∵在△EAC和△DAB中,AD=AE∠BAD=∠EAC∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠ABC+∠ACB=90°,∴∠CBF+∠BCF=∠ABC﹣∠ABD+∠ACB+∠ACE=90°,∴∠BFC=90°,即EC⊥BD.10.(2021•婺城区校级期末)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是AB=AP、AB⊥AP.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是BQ=AP、BQ⊥AP.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.【解题思路】(1)由于AC⊥BC,且AC=BC,边EF与边AC重合,且EF=FP,则△ABC与△EFP是全等的等腰直角三角形,根据等腰直角三角形的性质得到∠BAC=∠CAP=45°,AB=AP,则∠BAP=90°,于是AP⊥AB;(2)延长BQ交AP于H点,可得到△QPC为等腰直角三角形,则有QC=PC,根据“SAS”可判断△ACP≌△BCQ,则AP=BQ,∠CAP=∠CBQ,利用三角形内角和定理可得到∠AHQ=∠BCQ=90°,即AP⊥BQ;(3)BQ与AP所满足的数量关系为相等,位置关系为垂直.证明方法与(2)一样.【解答过程】解:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立.证明:如图,∵∠EPF=45°,∴∠CPQ=45°.∵AC⊥BC,∴∠CQP=∠CPQ,CQ=CP.在Rt△BCQ和Rt△ACP中,BC=AC∠BCQ=∠ACP∴Rt△BCQ≌Rt△ACP(SAS)∴BQ=AP;延长QB交AP于点N,∴∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.在Rt△BCQ中,∠BQC+∠CBQ=90°,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.11.(2021•香坊区期末)已知:点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M、N分别是射线AE、AF上的点,且PM=PN.(1)当点M在线段AB上,点N在线段AC的延长线上时(如图1),求证:BM=CN;(2)在(1)的条件下,AM+AN=2AC;(3)当点M在线段AB的延长线上时(如图2),若AC:PC=2:1,PC=4,求四边形ANPM的面积.【解题思路】(1)由点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,根据角平分线的性质,可得PB=PC,又由PM=PN,利用HL,即可判定Rt△PBM≌Rt△PCN,则可证得结论;(2)由角平分线的性质易证得AB=AC,又由AM+AN=AM+CN+AC=AM+BM+AC=AB+AC,即可证得结论;(3)由AC:PC=2:1,PC=4,即可求得AC的长,又由S四边形ANPM=S△APN+S△APB+S△PBM=S△APN+S△APB+S△PCN=S△APC+S△APB,即可求得四边形ANPM的面积.【解答过程】解:(1)∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF,∴PB=PC,∠PBM=∠PCN=90°,在Rt△PBM和Rt△PCN中,PM=PNPB=PC∴Rt△PBM≌Rt△PCN(HL),∴BM=CN;(2)∵∠APB=90°﹣∠PAB,∠APC=90°﹣∠PAC,∴∠APC=∠APB,∵PB⊥AE,PC⊥AF,∴PB=PC,∴AM+AN=AM+CN+AC=AM+BM+AC=AB+AC=2AC;故答案为:2;(3)∵AC:PC=2:1,PC=4,∴AC=8,∴AB=AC=8,PB=PC=4,∴S四边形ANPM=S△APN+S△APB+S△PBM=S△APN+S△APB+S△PCN=S△APC+S△APB=12AC•PC+12AB•PB12.(2021•常熟市期末)如图,△ABC的角平分线AD、BE相交于点P,(1)在图1中,分别画出点P到边AC、BC、BA的垂线段PF、PG、PH,这3条线段相等吗?为什么?(2)在图2中,∠ABC是直角,∠C=60°,其余条件都不变,请你判断并写出PE与PD之间的数量关系,并说明理由.【解题思路】(1)PF、PG与PH,3条线段相等,理由为:因为AD为∠BAC的平分线,PF垂直于AC,PH垂直于AB,根据角平分线定理得到PF=PH,同理BE为∠ABC的平分线,PG垂直于BC,PH垂直于AB,得到PG=PH,等量代换即可得证;(2)PE=PD,理由为:过P作PF垂直于AC,PG垂直于BC,由∠PDG为△ADC的一个外角,根据三角形的一个外角等于与它不相邻的两内角之和,得到∠PDG=∠C+∠CAD,又∠CAB=30°,AD为∠CAB的平分线得到∠CAD=1【解答过程】解:(1)PF=PH=PG,理由如下:∵AD平分∠BAC,PF⊥AC,PH⊥AB,∴PF=PH,∵BE平分∠ABC,PG⊥BC,PH⊥AB,∴PG=PH,∴PF=PH=PG;(2)PE=PD.证明:∵∠ABC=90°,∠C=60°,∴∠CAB=30°,∵AD平分∠BAC,BE平分∠ABC,∴∠CAD=∠BAD=12∠CAB=15°,∠ABE=∠CBE过点P作PF⊥AC,PG⊥BC,垂足分别为F、G,则∠PFE=∠PGD=90°,∵∠PDG为△ADC的一个外角,∴∠PDG=∠C+∠CAD=60°+1∵∠PEF是△ABE的一个外角,∴∠PEF=∠CAB+∠ABE=30°+1∴∠PEF=∠PDG,∵PF⊥AC,PG⊥BC,∴∠PFE=∠PGD=90°,由第一问得:PF=PG,∴△PFE≌△PGD,∴PE=PD.13.(2021•罗湖区校级期末)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.【解题思路】(1)作点A关于直线l的对称点,再连接解答即可;(2)连接BA,延长BA交直线l于N,当N即为所求;【解答过程】解:(1)如图所示:(2)如图所示;理由:∵NB﹣NA≤AB,∴当A、B、N共线时,BN﹣NA的值最大.14.(2021•香洲区校级期末)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【解题思路】(1)因为点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,所以AP=BQ.AB=AC,∠B=∠CAP=60°,因而运用边角边定理可知△ABQ≌△CAP.再用全等三角形的性质定理及三角形的角间关系、三角形的外角定理,可求得CQM的度数.(2)设时间为t,则AP=BQ=t,PB=4﹣t.分别就①当∠PQB=90°时;②当∠BPQ=90°时利用直角三角形的性质定理求得t的值.(3)首先利用边角边定理证得△PBC≌△QCA,再利用全等三角形的性质定理得到∠BPC=∠MQC.再运用三角形角间的关系求得∠CMQ的度数.【解答过程】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=4②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=8∴当第43秒或第8(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°15.(2021•临沂期末)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,﹣3),C(4,﹣2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(a,b)经过上述两次变换,那么对应A2C2上的点P2的坐标是(a﹣3,﹣b).【解题思路】(1)直接利用关于y轴对称点的性质得出答案;(2)利用轴对称求最短路线的方法得出P点位置即可;(3)直接利用平移变换的性质得出点P2的坐标.【解答过程】解:(1)如图所示:△A1B1C1就是所要求作的图形;(2)如图所示:△A2B2C2就是所要求作的图形;(3)如果AC上有一点P(a,b)经过上述两次变换,那么对应A2C2上的点P2的坐标是:P2(a﹣3,﹣b).故答案为:(a﹣3,﹣b).16.(2021•罗湖区校级期末)如图(1),方格图中每个小正方形的边长为1,点A、B、C都是格点.(1)画出△ABC关于直线MN对称的△A1B1C1;(2)写出AA1的长度;(3)如图(2),A、C是直线MN同侧固定的点,B是直线MN上的一个动点,在直线MN上画出点B,使AB+BC最小.【解题思路】(1)直接利用轴对称图形的性质分别得出对应点位置进而得出答案;(2)利用网格直接得出AA1的长度;(3)利用轴对称求最短路线的方法得出点B位置.【解答过程】解:(1)如图所示:△A1B1C1,即为所求;(2)AA1的长度为:10;(3)如图所示:点B′即为所求,此时AB′+B′C最小.17.(2021•太原期末)数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出两个不同类型且具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(说明:要求画出的两个三角形不相似,且不是等腰三角形.)(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.【解题思路】(1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°则可得AD=BD=CB∴△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.【解答过程】(1)证明:在△ABC中,∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠C=1∵BD平分∠ABC,∴∠1=∠2=36°∴∠3=∠1+∠A=72°,∴∠1=∠A,∠3=∠C,∴AD=BD,BD=BC,∴△ABD与△BDC都是等腰三角形.(2)解:如下图所示:(3)解:如图所示:(4)解:特征一:直角三角形(直角边不等);特征二:2倍内角关系,在△ABC中,∠A=2∠B,0°<∠B<45°,其中,∠B≠30°;18.(2021•东营期末)根据以下10个乘积,回答问题:11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;20×20.(1)试将以上各乘积分别写成一个“□2﹣∅2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用a1b1,a2b2,…,anbn表示n个乘积,其中a1,a2,a3,…,an,b1,b2,b3,…,bn为正数,a1<a2<a3<…<an,b1>b2>b3>…>bn,且a1+b1=a2+b2=a3+b3=…=an+bn,试由(1)、(2)猜测一个一般性的结论.(不要求证明)【解题思路】利用两数的和与这两数的差的积,就是它们的平方差.如11×29;可想几加几等于29,几减几等于11,可得20+9和20﹣9,可得11×29=202﹣92,同理思考其它的.【解答过程】解:(1)11×29=202﹣92;12×28=202﹣82;13×27=202﹣72;14×26=202﹣62;15×25=202﹣52;16×24=202﹣42;17×23=202﹣32;18×22=202﹣22;19×21=202﹣12;20×20=202﹣02.例如,11×29;假设11×29=□2﹣〇2,因为□2﹣〇2=(□+〇)(□﹣〇);所以,可以令□﹣〇=11,□+〇=29.解得,□=20,〇=9.故11×29=202﹣92.(或11×29=(20﹣9)(20+9)=202﹣92.(2)这10个乘积按照从小到大的顺序依次是:11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<20×20.(3)①若a+b=40,a、b是自然数,则ab≤202=400.②若a+b=40,则ab≤202=400.(8分)③若a+b=m,a、b是自然数,则ab≤(④若a+b=m,则ab≤(⑤若a1+b1=a2+b2=a3+b3=an+bn=40.且|a1﹣b1|≥|a2﹣b2|≥|a3﹣b3|≥≥|an﹣bn|,则a1b1≤a2b2≤a3b3≤≤anbn.⑥若a1+b1=a2+b2=a3+b3=an+bn=m.且|a1﹣b1|≥|a2﹣b2|≥|a3﹣b3|≥…≥|an﹣bn|,则a1b1≤a2b2≤a3b3≤…≤anbn.说明:给出结论①或②之一的得;给出结论③或④之一的得;给出结论⑤或⑥之一的得.19.(2021•浙江期末)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?【解题思路】(1)试着把28、2012写成平方差的形式,解方程即可判断是否是神秘数;(2)化简两个连续偶数为2k+2和2k的差,再判断;(3)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.【解答过程】解:(1)设28和2012都是“神秘数”,设28是x和x﹣2两数的平方差得到,则x2﹣(x﹣2)2=28,解得:x=8,∴x﹣2=6,即28=82﹣62,设2012是y和y﹣2两数的平方差得到,则y2﹣(y﹣2)2=2012,解得:y=504,y﹣2=502,即2012=5042﹣5022,所以28,2012都是神秘数.(2)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的神秘数是4的倍数,且是奇数倍.(3)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.∴两个连续奇数的平方差不是神秘数.20.(2021•太原期末)阅读下列材料,解决相应问题:“友好数对”已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“友好数对”.例如43×68=34×86=2924,所以43和68与34和86都是“友好数对”.(1)36和84是“友好数对”.(填“是”或“不是”)(2)为探究“友好数对”的本质,可设“友好数对”中一个数的十位数字为a,个位数字为b,且a≠b;另一个数的十位数字为c,个位数字为d,且c≠d,则a,b,c,d之间存在一个等量关系,其探究和说理过程如下,请你将其补充完整.解:根据题意,“友好数对”中的两个数分别表示为10a+b和10c+d,将它们各自的十位数字和个位数字交换位置后两个数依次表示为10b+a和10d+c.因为它们是友好数对,所以(10a+b)(10c+d)=(10b+a)(10d+c).即a,b,c,d的等量关系为:ac=bd.(3)请从下面A、B两题中任选一题作答,我选择B题.A.请再写出一对“友好数对”,与本题已给的“友好数对”不同.B.若有一个两位数,十位数字为x+2,个位数字为x,另一个两位数,十位数字为x+2,个位数字为x+8.且这两个数为“友好数对”,直接写出这两个两位数.【解题思路】(1)计算36×84和63×48,根据定义判断;(2)利用“十位数字×10+个位数字×1”表达出交换后的两位数,结合友好数对的的定义列出等量关系,并化简;(3)A、结合(2)中的等量关系ac=bd写出新的“友好数对”;B、根据“ac=bd”得(x+2)(x+2)=x(x+8),解方程得到x,写出两个两位数.【解答过程】解:(1)∵36×84=3024,63×48=3024,∴36×84=63×48,∴36和84是友好数对.故答案为:是.(2)∵一个数的十位数字为a,个位数字为b;另一个数的十位数字为c,个位数字为d,∴交换后十位数字为b,个位数字为a,另一个的十位数字为d,个位数字为c,∴两个数依次表示为10b+a,10d+c,∵这两个数是友好数对,∴(10a+b)(10c+d)=(10b+a)(10d+c),化简得:ac=bd.故答案为:10b+a,10d+c,(10b+a)(10d+c),ac=bd.(3)选A,根据ac=bd,可列举31和39,13和93,12和42,21和24,•••只要满足十位数字之积等于个位数字之积,且同一个数的个位与十位不同即可,答案不唯一.选B,由(2)得:(x+2)(x+2)=x(x+8),解得:x=1,∴两个两位数为:31和39.选A或选B都可以,只要满足“友好数对”的定义即可.故答案为:A或B.21.(2021•九龙坡区期末)甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为1元;(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是a+b2请问甲、乙两商场,哪个商场的提价较多?请说明理由.【解题思路】(1)灵活利用利润公式:售价﹣进价=利润,直接填空即可;(2)设该商品在乙商场的原价为x元,根据提价20%后,用6元钱购买该商品的件数比没提价前少买1件,即可列方程求解.(3)假设原价均为1元,分别求出甲、乙两商场提价后的代数式,比较大小即可求解.【解答过程】解:(1)1.15÷(1+15%)=1(元);(2)设该商品在乙商场的原价为x元,则6x解得x=1.经检验:x=1满足方程,符合实际.答:该商品在乙商场的原价为1元.(3)假设原价均为1元,则甲商场两次提价后的价格为:(1+a)(1+b)=1+a+b+ab.乙商场两次提价后的价格为:(1+a+b∵(a+b∴乙商场两次提价后价格较多.22.(2021•天津期末)某企业有九个生产车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A、B两组检验员,其中A组有8名检验员.他们先用两天将第一、二两个车间的成品检验完毕后,再去检验第三、四两个车间所有成品,又用去了三天时间;同时,用这五天时间,B组检验员也检验完余下的五个车间的成品,如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品.(1)用a、b表示B组检验员检验的成品总数;(2)求B组检验员的人数.【解题思路】(1)B组检验员检验的成品总数=余下五个车间原有的成品+这5天新生产的成品;(2)工作效率=工作总量÷检验的人数,根据“每个检验员的检验速度一样快”,可用这个等量关系来列方程.【解答过程】解:(1)5a+25b;答:B组检验员检验的成品总数为5a+25b;(2)∵每个检验员的检验速度一样,∴2a+4b8×2解得a=4b,即每个检验员速度为:2a+4b8×2B组检验员人数为:5a+25b3答:B组检验员的人数为12人.23.(2021•遂宁期末)如图,小刚家、王老师家和学校在一条直路上,小刚与王老师家相距3.5千米,王老师家与学校相距0.5千米.近来,小刚父母出差,如果王老师骑自行车到小刚家接小刚上学,就比平时走路上班多用24分钟.已知骑自行车的速度是步行速度的3倍.(1)问:王老师骑自行车的速度是多少千米/小时?(2)为了节约时间,王老师与小刚约定每天7:35从家里同时出发,小刚走路,王老师骑车,遇到小刚后,立即搭小刚到校.如果小刚和王老师走路的速度一样,王老师骑车的速度不变,请问他们能否在8:00钟前赶到学校?说明理由.【解题思路】(1)等量关系为:王老师骑车接小刚用的时间﹣直接骑车用的时间=24分钟;(2)两个等量关系:王老师相遇前走的路程+小刚相遇前走的路程=3.5千米;(王老师相遇后走的路程+0.5千米)÷骑车的速度=相遇后到校的时间,列方程组求解即可.【解答过程】解:(1)设王老师骑自行车的速度为x千米/时.由题意得:3.5×2+0.5x解得:x=15.经检验:x=15是原方程的解,且符合题意.(未写检验不扣分)∴王老师骑自行车的速度为15千米/小时;(2)答:能在8:00前赶到学校.设王老师与小刚相遇用了y小时,相遇后接小刚到校用了z小时.则由题意可得:5y+15y=3.515y+0.5解得:y=752446120∴能在8:00钟前赶到学校.答:能在8:00前赶到学校.24.(2021•泉州期末)周末某班组织登山活动,同学们分甲,乙两组从山脚下沿着一条道路同时向山顶进发,设甲,乙两组行进同一路段所用的时间之比2:3.(1)直接写出甲、乙两组行进速度之比;(2)当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米,试问山脚离山顶的路程有多远?(3)在题(2)所述内容(除最后的问句处)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇,请你先根据以上情景提出一个相应的问题,再给予解答.(要求:①问题的提出不需再增添其它条件;②问题的解决必须利用上述情景提供的所有书面条件.)【解题思路】(1)当路程相等时,速度与时间成反比,所以甲,乙两组行进同一路段所用的时间之比为2:3时,速度之比为3:2.(2)当时间一定相同时,路程与速度成正比,所以甲所走路程即全程和全程﹣1.2(乙的路程)之间的比值等于速度之比3:2,所以据此可列方程.(3)没有固定答案,但是不论怎样提问都不能违背题中已知条件.【解答过程】解:(1)当路程相等时,速度与时间成反比,所以甲、乙速度之比为3:2.(2)当时间一定相同时,路程与速度成正比;所以设山脚离山顶的路程为x千米.根据题意,得:xx−1.2解得:x=3.6.经检验:x=3.6是原方程的解.答:山脚离山顶的路程有3.6千米.(3)所提问题为:“B处离山顶最远为多少千米?”设B处离山顶的路程为s千米,则甲组所走的路程为s千米,乙组所走的路程为(1.2﹣s)千米.根据题意,得:s1.2−s解得:s=0.72.经检验:s=0.72是原方程的解,且符合题意.25.(2021•河南期末)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.【解题思路】(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=1(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;【解答过程】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=1∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,∠ACN=∠DCM∠CMD=∠N=90°∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;26.(2021•昌平区期末)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=1(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=1(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=1【解题思路】(1)可通过构建全等三角形来实现线段间的转换.延长EB到G,使BG=DF,连接AG.目的就是要证明三角形AGE和三角形AEF全等将EF转换成GE,那么这样EF=BE+DF了,于是证明两组三角形全等就是解题的关键.三角形ABE和AEF中,只有一条公共边AE,我们就要通过其他的全等三角形来实现,在三角形ABG和AFD中,已知了一组直角,BG=DF,AB=AD,因此两三角形全等,那么AG=AF,∠1=∠2,那么∠1+∠3=∠2+∠3=∠EAF=1(2)思路和作辅助线的方法与(1)完全一样,只不过证明三角形ABG和ADF全等中,证明∠ABG=∠ADF时,用到的等角的补角相等,其他的都一样.因此与(1)的结果完全一样.(3)按照(1)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(1)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE﹣BG=BE﹣DF.所以(1)的结论在(3)的条件下是不成立的.【解答过程】证明:(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=1∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版智能航运物流船运输合作协议合同2篇
- 二零二五年测绘数据处理与分析合同范本3篇
- 二零二五年特种花卉种子采购合同范本3篇
- 二零二五版商业街区保安临时工劳动合同示范文本3篇
- 二零二五版生态农业基地种植分包合同3篇
- 河北省二零二五年度二手房买卖合同附带专业拆除及清理服务3篇
- 二零二五年度车辆过户手续代理合同3篇
- 二零二五版汽车制造专用管子配件供应合同3篇
- 二零二五年度酒店食堂承包服务合同范本3篇
- 二零二五年度矿业风险评估与风险管理合同2篇
- 割接方案的要点、难点及采取的相应措施
- 2025年副护士长竞聘演讲稿(3篇)
- 2025至2031年中国台式燃气灶行业投资前景及策略咨询研究报告
- 原发性肾病综合征护理
- 第三章第一节《多变的天气》说课稿2023-2024学年人教版地理七年级上册
- 2025年中国电科集团春季招聘高频重点提升(共500题)附带答案详解
- 2025年度建筑施工现场安全管理合同2篇
- 建筑垃圾回收利用标准方案
- 2024年考研英语一阅读理解80篇解析
- 福建省厦门市2023-2024学年高二上学期期末考试语文试题(解析版)
- 防火墙施工组织设计
评论
0/150
提交评论