版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宿州市重点中学2025届高三下学期第六次检测数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为()A. B. C. D.2.已知集合,,若,则()A.4 B.-4 C.8 D.-83.若的二项式展开式中二项式系数的和为32,则正整数的值为()A.7 B.6 C.5 D.44.在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是()A. B. C. D.5.已知函数,,则的极大值点为()A. B. C. D.6.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为()A. B. C. D.7.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?()A. B. C. D.8.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.9.已知函数若对区间内的任意实数,都有,则实数的取值范围是()A. B. C. D.10.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()A. B. C. D.11.函数的大致图象是A. B. C. D.12.已知为坐标原点,角的终边经过点且,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.14.三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有________种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).15.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.16.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求不等式的解集;(2)当时,求实数的取值范围.18.(12分)已知,均为正项数列,其前项和分别为,,且,,,当,时,,.(1)求数列,的通项公式;(2)设,求数列的前项和.19.(12分)在底面为菱形的四棱柱中,平面.(1)证明:平面;(2)求二面角的正弦值.20.(12分)在如图所示的四棱锥中,四边形是等腰梯形,,,平面,,.(1)求证:平面;(2)已知二面角的余弦值为,求直线与平面所成角的正弦值.21.(12分)如图,在直三棱柱中,,,D,E分别为AB,BC的中点.(1)证明:平面平面;(2)求点到平面的距离.22.(10分)对于正整数,如果个整数满足,且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.(Ⅰ)写出整数4的所有“正整数分拆”;(Ⅱ)对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;(Ⅲ)对所有的正整数,证明:;并求出使得等号成立的的值.(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.【详解】由于,函数最高点与最低点的高度差为,所以函数的半个周期,所以,又,,则有,可得,所以,将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,所以的最小值为1,故选:B.【点睛】该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.2、B【解析】
根据交集的定义,,可知,代入计算即可求出.【详解】由,可知,又因为,所以时,,解得.故选:B.【点睛】本题考查交集的概念,属于基础题.3、C【解析】
由二项式系数性质,的展开式中所有二项式系数和为计算.【详解】的二项展开式中二项式系数和为,.故选:C.【点睛】本题考查二项式系数的性质,掌握二项式系数性质是解题关键.4、A【解析】
由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:∵复数z=i(i为虚数单位)在复平面中对应点Z(0,1),
∴=(0,1),将绕原点O逆时针旋转得到,
设=(a,b),,则,即,
又,解得:,∴,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.5、A【解析】
求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可.【详解】因为,故可得,令,因为,故可得或,则在区间单调递增,在单调递减,在单调递增,故的极大值点为.故选:A.【点睛】本题考查利用导数求函数的极值点,属基础题.6、B【解析】
由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:∴,解得,或(舍去),∴∴直线的方程为,设直线与抛物线的另一个交点为,由,解得或,∴,∴,故直线被截得的弦长为.故选:B.【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.7、D【解析】
设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,,结合等比数列的性质可求出答案.【详解】设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,,.故选:D.【点睛】本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.8、A【解析】
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.9、C【解析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得.当a<1时,,所以函数f(x)在单调递减,因为对区间内的任意实数,都有,所以,所以故a≥1,与a<1矛盾,故a<1矛盾.当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减.所以因为对区间内的任意实数,都有,所以,所以即令,所以所以函数g(a)在(1,e)上单调递减,所以,所以当1≤a<e时,满足题意.当a时,函数f(x)在(0,1)单调递增,因为对区间内的任意实数,都有,所以,故1+1,所以故综上所述,a∈.故选C.点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.10、D【解析】
由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.11、A【解析】
利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,,可排除D选项;当时,,当时,,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.12、C【解析】
根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【详解】根据题意,,解得,所以,所以,所以.故选:C.【点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设圆柱的轴截面的边长为x,可求得,代入圆柱的表面积公式,即得解【详解】设圆柱的轴截面的边长为x,则由,得,∴.故答案为:【点睛】本题考查了圆柱的轴截面和表面积,考查了学生空间想象,转化划归,数学运算的能力,属于基础题.14、192【解析】
根据题意,分步进行分析:①,在三对父子中任选1对,安排在相邻的位置上,②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案.【详解】根据题意,分步进行分析:①,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.15、0或6【解析】
计算得到圆心,半径,根据得到,利用圆心到直线的距离公式解得答案.【详解】,即,圆心,半径.,故圆心到直线的距离为,即,故或.故答案为:或.【点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。16、【解析】
根据程序框图得到程序功能,结合分段函数进行计算即可.【详解】解:程序的功能是计算,若输出的实数的值为,则当时,由得,当时,由,此时无解.故答案为:.【点睛】本题主要考查程序框图的识别和判断,理解程序功能是解决本题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,的取值范围为;当时,的取值范围为.【解析】
(1)当时,分类讨论把不等式化为等价不等式组,即可求解.(2)由绝对值的三角不等式,可得,当且仅当时,取“”,分类讨论,即可求解.【详解】(1)当时,,不等式可化为或或,解得不等式的解集为.(2)由绝对值的三角不等式,可得,当且仅当时,取“”,所以当时,的取值范围为;当时,的取值范围为.【点睛】本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1),(2)【解析】
(1),所,两式相减,即可得到数列递推关系求解通项公式,由,整理得,得到,即可求解通项公式;(2)由(1)可知,,即可求得数列的前项和.【详解】(1)因为,所,两式相减,整理得,当时,,解得,所以数列是首项和公比均为的等比数列,即,因为,整理得,又因为,所以,所以,即,因为,所以数列是以首项和公差均为1的等差数列,所以;(2)由(1)可知,,,即.【点睛】此题考查求数列的通项公式,以及数列求和,关键在于对题中所给关系合理变形,发现其中的关系,裂项求和作为一类常用的求和方法,需要在平常的学习中多做积累常见的裂项方式.19、(1)证明见解析;(2)【解析】
(1)由已知可证,即可证明结论;(2)根据已知可证平面,建立空间直角坐标系,求出坐标,进而求出平面和平面的法向量坐标,由空间向量的二面角公式,即可求解.【详解】方法一:(1)依题意,且∴,∴四边形是平行四边形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且为的中点,∴,∵平面且,∴平面,以为原点,分别以为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,,,,∴设平面的法向量为,则,∴,取,则.设平面的法向量为,则,∴,取,则.∴,设二面角的平面角为,则,∴二面角的正弦值为.方法二:(1)证明:连接交于点,因为四边形为平行四边形,所以为中点,又因为四边形为菱形,所以为中点,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【点睛】本题主要考查线面平行的证明,考查空间向量法求面面角,意在考查直观想象、逻辑推理与数学运算的数学核心素养,属于中档题.20、(1)证明见解析;(2).【解析】
(1)由已知可得,结合,由直线与平面垂直的判定可得平面;(2)由(1)知,,则,,两两互相垂直,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,设,0,,由二面角的余弦值为求解,再由空间向量求解直线与平面所成角的正弦值.【详解】(1)证明:因为四边形是等腰梯形,,,所以.又,所以,因此,,又,且,,平面,所以平面.(2)取的中点,连接,,由于,因此,又平面,平面,所以.由于,,平面,所以平面,故,所以为二面角的平面角.在等腰三角形中,由于,因此,又,因为,所以,所以以为轴、为轴、为轴建立空间直角坐标系,则,,,,设平面的法向量为所以,即,令,则,,则平面的法向量,,设直线与平面所成角为,则【点睛】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,属于中档题.21、(1)证明见解析;(2).【解析】
(1)通过证明面,即可由线面垂直推
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度担保人免责知识产权担保协议3篇
- 2024年度影视作品录像拍摄与制作合同3篇
- 2024年国际工程项目挖掘机租赁及跨境合作合同3篇
- 2024年度教育培训广告制作与推广合同样本3篇
- 2024年度房产代持合同续签与变更协议范本6篇
- 2024年度农村房屋租赁合同范本(含租赁期限和租金调整)6篇
- 新疆警察学院《市场风险管理》2023-2024学年第一学期期末试卷
- 《深圳CBD立体彩》课件
- 修剪树枝清算合同范例
- 宣传长期合作合同范例
- 电池制造工(电池(组)装配工)行业职业技能竞赛理论考试题库及答案
- 四年级数学上册 第6章《除法》单元测评必刷卷(北师大版)
- 部编版语文小学三年级上学期期末试卷与参考答案(2024年)
- 《环境保护产品技术要求 工业废气吸附净化装置》HJT 386-2007
- 关于拖欠民营企业中小企业的2024年清理拖欠民营企业中小企业账款工作方案
- 2024年全国高考数学试题及解析答案(新课标Ⅱ卷)
- 2024年广东省汕尾市海丰县六上数学期末教学质量检测试题含解析
- 保安项目人员替换方案
- 国外合同协议书
- 癌症患者生活质量量表EORTC-QLQ-C30
- 建筑工程技术专业《建筑工程质量与安全管理》课程标准
评论
0/150
提交评论