2025届河南省开封市兰考县第三中学高三下第一次测试数学试题含解析_第1页
2025届河南省开封市兰考县第三中学高三下第一次测试数学试题含解析_第2页
2025届河南省开封市兰考县第三中学高三下第一次测试数学试题含解析_第3页
2025届河南省开封市兰考县第三中学高三下第一次测试数学试题含解析_第4页
2025届河南省开封市兰考县第三中学高三下第一次测试数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省开封市兰考县第三中学高三下第一次测试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则()A. B. C. D.2.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是A. B. C. D.3.阅读下面的程序框图,运行相应的程序,程序运行输出的结果是()A.1.1 B.1 C.2.9 D.2.84.一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件5.已知函数,且的图象经过第一、二、四象限,则,,的大小关系为()A. B.C. D.6.已知a>b>0,c>1,则下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.7.若实数、满足,则的最小值是()A. B. C. D.8.曲线在点处的切线方程为,则()A. B. C.4 D.89.已知复数满足,则的最大值为()A. B. C. D.610.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.511.已知向量,,若,则()A. B. C. D.12.执行如图所示的程序框图后,输出的值为5,则的取值范围是().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,直线与抛物线相切于点,是上一点(不与重合),若以线段为直径的圆恰好经过,则点到抛物线顶点的距离的最小值是__________.14.如果函数(,且,)在区间上单调递减,那么的最大值为__________.15.设双曲线的左焦点为,过点且倾斜角为45°的直线与双曲线的两条渐近线顺次交于,两点若,则的离心率为________.16.已知向量,,若,则实数______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.18.(12分)如图,已知在三棱锥中,平面,分别为的中点,且.(1)求证:;(2)设平面与交于点,求证:为的中点.19.(12分)已知函数.(1)当时,试求曲线在点处的切线;(2)试讨论函数的单调区间.20.(12分)已知动圆E与圆外切,并与直线相切,记动圆圆心E的轨迹为曲线C.(1)求曲线C的方程;(2)过点的直线l交曲线C于A,B两点,若曲线C上存在点P使得,求直线l的斜率k的取值范围.21.(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,,,湖面上的点在线段上,且,均与圆相切,切点分别为,,其中栈道,,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.22.(10分)设函数.(1)当时,求不等式的解集;(2)当时,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.2、B【解析】

初始:,,第一次循环:,,继续循环;第二次循环:,,此时,满足条件,结束循环,所以判断框内填入的条件可以是,所以正整数的最小值是3,故选B.3、C【解析】

根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题.【详解】初始值,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.4、D【解析】

由题意列出约束条件和目标函数,数形结合即可解决.【详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.5、C【解析】

根据题意,得,,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,,则|,即,所以.故选:C.【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.6、B【解析】

根据函数单调性逐项判断即可【详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为y=cx为增函数,且a>b,所以ca>cb,正确对C,因为y=xc为增函数,故,错误;对D,因为在为减函数,故,错误故选B.【点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题.7、D【解析】

根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.8、B【解析】

求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.9、B【解析】

设,,利用复数几何意义计算.【详解】设,由已知,,所以点在单位圆上,而,表示点到的距离,故.故选:B.【点睛】本题考查求复数模的最大值,其实本题可以利用不等式来解决.10、A【解析】

根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.11、A【解析】

利用平面向量平行的坐标条件得到参数x的值.【详解】由题意得,,,,解得.故选A.【点睛】本题考查向量平行定理,考查向量的坐标运算,属于基础题.12、C【解析】

框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满足输出结果,故.故选:C.【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据抛物线,不妨设,取,通过求导得,,再根据以线段为直径的圆恰好经过,则,得到,两式联立,求得点N的轨迹,再求解最值.【详解】因为抛物线,不妨设,取,所以,即,所以,因为以线段为直径的圆恰好经过,所以,所以,所以,由,解得,所以点在直线上,所以当时,最小,最小值为.故答案为:2【点睛】本题主要考查直线与抛物线的位置关系直线的交轨问题,还考查了运算求解的能力,属于中档题.14、18【解析】

根据函数单调性的性质,分一次函数和一元二次函数的对称性和单调区间的关系建立不等式,利用基本不等式求解即可.【详解】解:①当时,,在区间上单调递减,则,即,则.②当时,,函数开口向上,对称轴为,因为在区间上单调递减,则,因为,则,整理得,又因为,则.所以即,所以当且仅当时等号成立.综上所述,的最大值为18.故答案为:18【点睛】本题主要考查一次函数与二次函数的单调性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.15、【解析】

设直线的方程为,与联立得到A点坐标,由得,,代入可得,即得解.【详解】由题意,直线的方程为,与联立得,,由得,,从而,即,从而离心率.故答案为:【点睛】本题考查了双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.16、-2【解析】

根据向量坐标运算可求得,根据平行关系可构造方程求得结果.【详解】由题意得:,解得:本题正确结果:【点睛】本题考查向量的坐标运算,关键是能够利用平行关系构造出方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)首先将参数方程转化为普通方程再根据公式化为极坐标方程即可;(2)设,,由,即可求出,则计算可得;【详解】解:(1)圆的参数方程(为参数)可化为,∴,即圆的极坐标方程为.(2)设,由,解得.设,由,解得.∵,∴.【点睛】本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与计算能力,属于中档题.18、(1)证明见解析;(2)证明见解析.【解析】

(1)要做证明,只需证明平面即可;(2)易得∥平面,平面,利用线面平行的性质定理即可得到∥,从而获得证明【详解】证明:(1)因为平面,平面,所以.因为,所以.又因为,平面,平面,所以平面.又因为平面,所以.(2)因为平面与交于点,所以平面.因为分别为的中点,所以∥.又因为平面,平面,所以∥平面.又因为平面,平面平面,所以∥,又因为是的中点,所以为的中点.【点睛】本题考查线面垂直的判定定理以及线面平行的性质定理,考查学生的逻辑推理能力,是一道容易题.19、(1);(2)见解析【解析】

(1)对函数进行求导,可以求出曲线在点处的切线,利用直线的斜截式方程可以求出曲线的切线方程;(2)对函数进行求导,对实数进行分类讨论,可以求出函数的单调区间.【详解】(1)当时,函数定义域为,,所以切线方程为;(2)当时,函数定义域为,在上单调递增当时,恒成立,函数定义域为,又在单调递增,单调递减,单调递增当时,函数定义域为,在单调递增,单调递减,单调递增当时,设的两个根为且,由韦达定理易知两根均为正根,且,所以函数的定义域为,又对称轴,且,在单调递增,单调递减,单调递增【点睛】本题考查了曲线切线方程的求法,考查了利用函数的导数讨论函数的单调性问题,考查了分类思想.20、(1);(2).【解析】

(1)根据抛物线的定义,结合已知条件,即可容易求得结果;(2)设出直线的方程,联立抛物线方程,根据直线与抛物线相交则,结合由得到的斜率关系,即可求得斜率的范围.【详解】(1)因为动圆与圆外切,并与直线相切,所以点到点的距离比点到直线的距离大.因为圆的半径为,所以点到点的距离等于点到直线的距离,所以圆心的轨迹为抛物线,且焦点坐标为.所以曲线的方程.(2)设,,由得,由得且.,,同理由,得,即,所以,由,得且,又且,所以的取值范围为.【点睛】本题考查由抛物线定义求抛物线方程,涉及直线与抛物线相交结合垂直关系求斜率的范围,属综合中档题.21、,;当时,栈道总长度最短.【解析】

连,,由切线长定理知:,,,,即,,则,,进而确定的取值范围;根据求导得,利用增减性算出,进而求得取值.【详解】解:连,,由切线长定理知:,,,又,,故,则劣弧的长为,因此,优弧的长为,又,故,,即,,所以,,,则;,,其中,,-0+单调递减极小值单调递增故时,所以当时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论