版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省牡东部地区四校联考高考数学四模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合.为自然数集,则下列表示不正确的是()A. B. C. D.2.集合,,则=()A. B.C. D.3.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有()A.69人 B.84人 C.108人 D.115人4.已知命题:是“直线和直线互相垂直”的充要条件;命题:函数的最小值为4.给出下列命题:①;②;③;④,其中真命题的个数为()A.1 B.2 C.3 D.45.已知向量,若,则实数的值为()A. B. C. D.6.已知等差数列中,则()A.10 B.16 C.20 D.247.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为()A.1 B.2 C.3 D.48.的展开式中的系数是()A.160 B.240 C.280 D.3209.已知,则()A. B. C. D.10.已知下列命题:①“”的否定是“”;②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中真命题的序号为()A.③④ B.①② C.①③ D.②④11.已知数列满足,(),则数列的通项公式()A. B. C. D.12.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若恒成立,则的取值范围是___________.14.关于函数有下列四个命题:①函数在上是增函数;②函数的图象关于中心对称;③不存在斜率小于且与函数的图象相切的直线;④函数的导函数不存在极小值.其中正确的命题有______.(写出所有正确命题的序号)15.已知在等差数列中,,,前n项和为,则________.16.已知复数(为虚数单位),则的共轭复数是_____,_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线及直线.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A,B两点,O是原点,且,求实数k的值.18.(12分)已知点,直线与抛物线交于不同两点、,直线、与抛物线的另一交点分别为两点、,连接,点关于直线的对称点为点,连接、.(1)证明:;(2)若的面积,求的取值范围.19.(12分)已知函数,,设.(1)当时,求函数的单调区间;(2)设方程(其中为常数)的两根分别为,,证明:.(注:是的导函数)20.(12分)设数列是等比数列,,已知,(1)求数列的首项和公比;(2)求数列的通项公式.21.(12分)如图,四棱锥中,底面为直角梯形,,,,,在锐角中,E是边PD上一点,且.(1)求证:平面ACE;(2)当PA的长为何值时,AC与平面PCD所成的角为?22.(10分)在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB=2BC,点Q为AE的中点.(1)求证:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
集合.为自然数集,由此能求出结果.【详解】解:集合.为自然数集,在A中,,正确;在B中,,正确;在C中,,正确;在D中,不是的子集,故D错误.故选:D.【点睛】本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.2、C【解析】
先化简集合A,B,结合并集计算方法,求解,即可.【详解】解得集合,所以,故选C.【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小.3、D【解析】
先求得名学生中,只能说出一种或一种也说不出的人数,由此利用比例,求得名学生中对四大发明只能说出一种或一种也说不出的人数.【详解】在这100名学生中,只能说出一种或一种也说不出的有人,设对四大发明只能说出一种或一种也说不出的有人,则,解得人.故选:D【点睛】本小题主要考查利用样本估计总体,属于基础题.4、A【解析】
先由两直线垂直的条件判断出命题p的真假,由基本不等式判断命题q的真假,从而得出p,q的非命题的真假,继而判断复合命题的真假,可得出选项.【详解】已知对于命题,由得,所以命题为假命题;关于命题,函数,当时,,当即时,取等号,当时,函数没有最小值,所以命题为假命题.所以和是真命题,所以为假命题,为假命题,为假命题,为真命题,所以真命题的个数为1个.故选:A.【点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.5、D【解析】
由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.【详解】解:,,即,将和代入,得出,所以.故选:D.【点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.6、C【解析】
根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.7、C【解析】试题分析:根据题意,当时,令,得;当时,令,得,故输入的实数值的个数为1.考点:程序框图.8、C【解析】
首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.9、B【解析】
利用诱导公式以及同角三角函数基本关系式化简求解即可.【详解】,本题正确选项:【点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力.10、B【解析】
由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B.【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.11、A【解析】
利用数列的递推关系式,通过累加法求解即可.【详解】数列满足:,,可得以上各式相加可得:,故选:.【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.12、D【解析】
设,,作为一个基底,表示向量,,,然后再用数量积公式求解.【详解】设,,所以,,,所以.故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求导得到,讨论和两种情况,计算时,函数在上单调递减,故,不符合,排除,得到答案。【详解】因为,所以,因为,所以.当,即时,,则在上单调递增,从而,故符合题意;当,即时,因为在上单调递增,且,所以存在唯一的,使得.令,得,则在上单调递减,从而,故不符合题意.综上,的取值范围是.故答案为:.【点睛】本题考查了不等式恒成立问题,转化为函数的最值问题是解题的关键.14、①②③【解析】
由单调性、对称性概念、导数的几何意义、导数与极值的关系进行判断.【详解】函数的定义域是,由于,在上递增,∴函数在上是递增,①正确;,∴函数的图象关于中心对称,②正确;,时取等号,∴③正确;,设,则,显然是即的极小值点,④错误.故答案为:①②③.【点睛】本题考查函数的单调性、对称性,考查导数的几何意义、导数与极值,解题时按照相关概念判断即可,属于中档题.15、39【解析】
设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.16、【解析】
直接利用复数的乘法运算化简,从而得到复数的共轭复数和的模.【详解】,则复数的共轭复数为,且.故答案为:;.【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】
(1)联立直线方程与双曲线方程,消去,得到关于的一元二次方程,根据根的判别式,即可求出结论;(2)设,由(1)可得关系,再由直线l过点,可得,进而建立关于的方程,求解即可.【详解】(1)双曲线C与直线l有两个不同的交点,则方程组有两个不同的实数根,整理得,,解得且.双曲线C与直线l有两个不同交点时,k的取值范围是.(2)设交点,直线l与y轴交于点,,.,即,整理得,解得或或.又,或时,的面积为.【点睛】本题考查直线与双曲线的位置关系、三角形面积计算,要熟练掌握根与系数关系解决相交弦问题,考查计算求解能力,属于中档题.18、(1)见解析;(2).【解析】
(1)设点、,求出直线、的方程,与抛物线的方程联立,求出点、的坐标,利用直线、的斜率相等证明出;(2)设点到直线、的距离分别为、,求出,利用相似得出,可得出的边上的高,并利用弦长公式计算出,即可得出关于的表达式,结合不等式可解出实数的取值范围.【详解】(1)设点、,则,直线的方程为:,由,消去并整理得,由韦达定理可知,,,代入直线的方程,得,解得,同理,可得,,,,代入得,因此,;(2)设点到直线、的距离分别为、,则,由(1)知,,,,,,同理,得,,由,整理得,由韦达定理得,,,得,设点到直线的高为,则,,,,解得,因此,实数的取值范围是.【点睛】本题考查直线与直线平行的证明,考查实数的取值范围的求法,考查抛物线、直线方程、韦达定理、弦长公式、直线的斜率等基础知识,考查运算求解能力,考查数形结合思想,是难题.19、(1)在上单调递增,在上单调递减.(2)见解析【解析】
(1)求出导函数,由确定增区间,由确定减区间;(2)求出含有参数的,再求出,由的两根是,得,计算,代入后可得结论.【详解】解:,函数的定义域为,.(1)当时,,由得,由得,故函数在上单调递增,在上单调递减.(2)证明:由条件可得,,,方程的两根分别为,,,且,可得..【点睛】本题考查用导数研究函数的单调性,考查导数的运算、方程根的知识.在可导函数中一般由确定增区间,由确定减区间.20、(1)(2)【解析】
本题主要考查了等比数列的通项公式的求解,数列求和的错位相减求和是数列求和中的重点与难点,要注意掌握.(1)设等比数列{an}的公比为q,则q+q2=6,解方程可求q(2)由(1)可求an=a1•qn-1=2n-1,结合数列的特点,考虑利用错位相减可求数列的和解:(1)(2),两式相减:21、(1)证明见解析;(2)当时,AC与平面PCD所成的角为.【解析】
(1)连接交于,由相似三角形可得,结合得出,故而平面;(2)过作,可证平面,根据计算,得出的大小,再计算的长.【详解】(1)证明:连接BD交AC于点O,连接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F为垂足,连接CF平面PAD,平面PAD.,有,,平面就是AC与平面PCD所成的角,,,,,,时,AC与平面PCD所成的角为.【点睛】本题考查了线面平行的判定,线面垂直的判定与线面角的计算,属于中档题.22、(1)见解析(2)【解析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度外贸服装品牌授权及产品销售合同3篇
- 二零二五年度矿山开采土石方剥离与综合利用合同3篇
- 2024年中国片状模塑料市场调查研究报告
- 2024年中国渔具用钢丝绳市场调查研究报告
- 二零二五年度林业产业发展竞业禁止模板木方交易协议书3篇
- 2025年度化工废料处理服务合同6篇
- 2024年国珍宴白酒项目可行性研究报告
- 《交流微电网能量管理系统控制策略与软件开发》
- 2024年汝南县人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年中国套管帽市场调查研究报告
- 球磨机安全检查表分析(SCL)+评价记录
- 学习会计基础工作规范课件
- 双面埋弧焊螺旋钢管公称外公壁厚和每米理论重量
- 富士施乐VC2265打印机使用说明SPO
- 医院工会经费使用与管理办法、制度规则
- 服务态度决定客户满意度试题含答案
- 中学历史教育中的德育状况调查问卷
- 教科版四年级科学上册全册复习教学设计及知识点整理
- 重庆万科渠道制度管理办法2022
- 上海黄金交易所贵金属交易员题库
- 蒸汽管道设计表(1)
评论
0/150
提交评论