宁夏银川九中2025届高三第六次模拟考试数学试卷含解析_第1页
宁夏银川九中2025届高三第六次模拟考试数学试卷含解析_第2页
宁夏银川九中2025届高三第六次模拟考试数学试卷含解析_第3页
宁夏银川九中2025届高三第六次模拟考试数学试卷含解析_第4页
宁夏银川九中2025届高三第六次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏银川九中2025届高三第六次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义两种运算“★”与“◆”,对任意,满足下列运算性质:①★,◆;②()★★,◆◆,则(◆2020)(2020★2018)的值为()A. B. C. D.2.要得到函数的图象,只需将函数的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位3.若实数、满足,则的最小值是()A. B. C. D.4.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有()A.24 B.36 C.48 D.645.若双曲线:的一条渐近线方程为,则()A. B. C. D.6.正项等差数列的前和为,已知,则=()A.35 B.36 C.45 D.547.在中,在边上满足,为的中点,则().A. B. C. D.8.函数的一个单调递增区间是()A. B. C. D.9.已知定义在上的函数,,,,则,,的大小关系为()A. B. C. D.10.已知无穷等比数列的公比为2,且,则()A. B. C. D.11.若的内角满足,则的值为()A. B. C. D.12.已知直线y=k(x+1)(k>0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA|=()A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.如图,在菱形ABCD中,AB=3,,E,F分别为BC,CD上的点,,若线段EF上存在一点M,使得,则____________,____________.(本题第1空2分,第2空3分)14.已知多项式满足,则_________,__________.15.已知抛物线的焦点为,斜率为的直线过且与抛物线交于两点,为坐标原点,若在第一象限,那么_______________.16.已知数列的各项均为正数,满足,.,若是等比数列,数列的通项公式_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)求在上的最大值和最小值.18.(12分)已知函数.(1)讨论的单调性;(2)若,设,证明:,,使.19.(12分)设函数(其中),且函数在处的切线与直线平行.(1)求的值;(2)若函数,求证:恒成立.20.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)求直线的直角坐标方程与曲线的普通方程;(Ⅱ)已知点设直线与曲线相交于两点,求的值.21.(12分)如图,在直角中,,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.(1)证明:平面;(2)当直线与平面所成的角取最大值时,求二面角的正弦值.22.(10分)已知中,角,,的对边分别为,,,已知向量,且.(1)求角的大小;(2)若的面积为,,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据新运算的定义分别得出◆2020和2020★2018的值,可得选项.【详解】由()★★,得(+2)★★,又★,所以★,★,★,,以此类推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此类推,◆2020,所以(◆2020)(2020★2018),故选:B.【点睛】本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题.2、D【解析】

直接根据三角函数的图象平移规则得出正确的结论即可;【详解】解:函数,要得到函数的图象,只需将函数的图象向左平移个单位.故选:D.【点睛】本题考查三角函数图象平移的应用问题,属于基础题.3、D【解析】

根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.4、B【解析】

根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.5、A【解析】

根据双曲线的渐近线列方程,解方程求得的值.【详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A【点睛】本小题主要考查双曲线的渐近线,属于基础题.6、C【解析】

由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【详解】正项等差数列的前项和,,,解得或(舍),,故选C.【点睛】本题主要考查等差数列的性质与求和公式,属于中档题.解等差数列问题要注意应用等差数列的性质()与前项和的关系.7、B【解析】

由,可得,,再将代入即可.【详解】因为,所以,故.故选:B.【点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.8、D【解析】

利用同角三角函数的基本关系式、二倍角公式和辅助角公式化简表达式,再根据三角函数单调区间的求法,求得的单调区间,由此确定正确选项.【详解】因为,由单调递增,则(),解得(),当时,D选项正确.C选项是递减区间,A,B选项中有部分增区间部分减区间.故选:D【点睛】本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.9、D【解析】

先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【详解】当时,,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【点睛】本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.10、A【解析】

依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,,解得,所以,,故选A。【点睛】本题主要考查无穷等比数列求和公式的应用。11、A【解析】

由,得到,得出,再结合三角函数的基本关系式,即可求解.【详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.12、C【解析】

方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以由等腰三角形三线合一得点的横坐标为,所以,所以.方法二:抛物线的准线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又①②由①②得.故选:C【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据题意,设,则,所以,解得,所以,从而有.14、【解析】∵多项式满足∴令,得,则∴∴该多项式的一次项系数为∴∴∴令,得故答案为5,7215、2【解析】

如图所示,先证明,再利用抛物线的定义和相似得到.【详解】由题得,.因为.所以,过点A、B分别作准线的垂线,垂足分别为M,N,过点B作于点E,设|BF|=m,|AF|=n,则|BN|=m,|AM|=n,所以|AE|=n-m,因为,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案为:2【点睛】本题主要考查直线和抛物线的位置关系,考查抛物线的定义,意在考查学生对这些知识的理解掌握水平.16、【解析】

利用递推关系,等比数列的通项公式即可求得结果.【详解】因为,所以,因为是等比数列,所以数列的公比为1.又,所以当时,有.这说明在已知条件下,可以得到唯一的等比数列,所以,故答案为:.【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据递推公式求数列的通项公式,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】

将函数解析式化简即可求出函数的最小正周期根据正弦函数的图象和性质即可求出函数在定义域上的最大值和最小值【详解】(Ⅰ)由题意得原式的最小正周期为.(Ⅱ),.当,即时,;当,即时,.综上,得时,取得最小值为0;当时,取得最大值为.【点睛】本题主要考查了两角和与差的余弦公式展开,辅助角公式,三角函数的性质等,较为综合,也是常考题型,需要计算正确,属于基础题18、(1)见解析;(2)证明见解析.【解析】

(1),分,,,四种情况讨论即可;(2)问题转化为,利用导数找到与即可证明.【详解】(1).①当时,恒成立,当时,;当时,,所以,在上是减函数,在上是增函数.②当时,,.当时,;当时,;当时,,所以,在上是减函数,在上是增函数,在上是减函数.③当时,,则在上是减函数.④当时,,当时,;当时,;当时,,所以,在上是减函数,在上是增函数,在上是减函数.(2)由题意,得.由(1)知,当,时,,.令,,故在上是减函数,有,所以,从而.,,则,令,显然在上是增函数,且,,所以存在使,且在上是减函数,在上是增函数,,所以,所以,命题成立.【点睛】本题考查利用导数研究函数的单调性以及证明不等式的问题,考查学生逻辑推理能力,是一道较难的题.19、(1)(2)证明见解析【解析】

(1)求导得到,解得答案.(2)变形得到,令函数,求导得到函数单调区间得到,,得到证明.【详解】(1),,解得.(2)得,变形得,令函数,,令解得,当时,时.函数在上单调递增,在上单调递减,,而函数在区间上单调递增,,,即,即,恒成立.【点睛】本题考查了根据切线求参数,证明不等式,意在考查学生的计算能力和转化能力,综合应用能力.20、(Ⅰ)直线的直角坐标方程为;曲线的普通方程为;(Ⅱ).【解析】

(I)利用参数方程、普通方程、极坐标方程间的互化公式即可;(II)将直线参数方程代入抛物线的普通方程,可得,而根据直线参数方程的几何意义,知,代入即可解决.【详解】由可得直线的直角坐标方程为由曲线的参数方程,消去参数可得曲线的普通方程为.易知点在直线上,直线的参数方程为(为参数).将直线的参数方程代入曲线的普通方程,并整理得.设是方程的两根,则有.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,直线参数方程的几何意义,是一道容易题.21、(1)见解析;(2)【解析】

(1)先算出的长度,利用勾股定理证明,再由已知可得,利用线面垂直的判定定理即可证明;(2)由(1)可得为直线与平面所成的角,要使其最大,则应最小,可得为中点,然后建系分别求出平面的法向量即可算得二面角的余弦值,进一步得到正弦值.【详解】(1)在中,,由余弦定理得,∴,∴,由题意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以为坐标原点,以,,的方向为,,轴的正方向,建立空间直角坐标系.∵平面,∴在平面上的射影是,∴与平面所成的角是,∴最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论