版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
知识点复习(二次函数)2021/6/271知识点小结:二次函数解析式二次函数图象与性质二次函数图像的平移二次函数a、b、c的符号判别图象与X轴的交点个数二次函数与一元二次方程的关系二次函数的应用2021/6/272解析式:(1)一般式:
y=ax2+bx+c(a≠0),
对称轴:直线x=
顶点坐标:(,)
(2)顶点式:y=a(x+m)2+k(a≠0),
对称轴:直线x=-m;
顶点坐标为(-m,k)
(3)两根式:y=a(x-x1)(x-x2)(a≠0),
对称轴:直线x=
(其中x1、x2是二次函数与x轴的两个交点的横坐标).2021/6/2731、开口方向:当a>0时,函数开口方向向上;当a<0时,函数开口方向向下;2、增减性:当a>0时,在对称轴左侧,y随着x的增大而减少;在对称轴右侧,y随着x的增大而增大;当a<0时,在对称轴左侧,y随着x的增大而增大;在对称轴右侧,y随着x的增大而减少;3、最大或最小值:当a>0时,函数有最小值,并且当x=,y最小值=当a<0时,函数有最大值,并且当x=y最大值=二次函数y=ax2+bx+c(a≠0)的图象与性质2021/6/274二次函数图像的平移:规律:左加右减,上加下减思考:y=ax2
如何变换到y=ax2+bx+c?方法:1.先将一般式化为顶点式
2.采用顶点平移法
2021/6/275①a的符号判别由开口方向确定:当开口向上时,a>0;当开口向下时,a<0;②c的符号判别由与Y轴的交点来确定:若交点在X轴的上方,则c>0;若交点在X轴的下方,则C<0;③b的符号由对称轴来确定:对称轴在Y轴的左侧,则a、b同号;若对称轴在Y轴的右侧,则a、b异号;(a与b左同右异)二次函数y=ax2+bx+c(a≠0)中a、b、c的符号判别:2021/6/276图象与X轴的交点个数当Δ=b2-4ac>0时,函数与X轴有两个交点;Δ=b2-4ac<0时,函数与X轴没有交点;Δ=b2-4ac=0时;函数与X轴只有一个交点;(1)二次函数y=ax2+bx+c(a≠0)与X轴只有一个交点或二次函数的顶点在X轴上,则Δ=b2-4ac=0;(2)二次函数y=ax2+bx+c(a≠0)的顶点在Y轴上或二次函数的图象关于Y轴对称,则b=0;(3)二次函数y=ax2+bx+c(a≠0)经过原点,则c=0;2021/6/277二次函数与一元二次方程的关系:方程ax2+bx+c=0(a>0)有两个不相等的实数根判别式Δ>0对应的二次函数y=ax2+bx+c(a>0)的开口向上且顶点在x轴下方;方程ax2+bx+c=0(a>0)有两个相等的实数根判别式Δ=0对应的二次函数y=ax2+bx+c(a>0)的开口向上且顶点在x轴上;方程ax2+bx+c=0(a>0)没有实数根判别式Δ<0对应的二次函数y=ax2+bx+c(a>0)的开口向上且顶点在x轴上方.也就是说,判断一个方程是否有解以及解的个数的问题,可以转化为讨论对应的二次函数的图象开口方向以及顶点与x轴的位置问题2021/6/278二次函数的应用:1根据实际问题,建立二次函数模型,解决实际问题(如例1:求利润,面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《货币的本质和职能》课件
- 某隧道病害整治实施性施工组织设计方案
- 开题报告:知识、社团与话语权:美国进步时代教师职业化路径研究
- 开题报告:义务教育学校校长效能评价指标体系应用研究
- 开题报告:新质生产力驱动下的高校生涯教育创新研究
- 开题报告:新时代基础教育财政体制与结构研究
- 城市道路雨水排水设计教学课件
- 2024年室内精装修工程承包合同
- 国际音标发音模版课件
- 中考地理总复习专题20 中国的自然资源(梯级进阶练)(解析版)
- 2024-2029年缺血性脑卒中预防治疗行业市场现状供需分析及市场深度研究发展前景及规划投资研究报告
- MOOC 液压传动-国防科技大学 中国大学慕课答案
- SYT 7623-2021 柱塞气举技术规范-PDF解密
- 智慧冷链物流智慧树知到期末考试答案2024年
- 2023GOLD慢性阻塞性肺疾病诊断管理及预防解读
- 安保公司法律培训课件
- 扫黄打非主题班会 课件
- 叉车进场验收表
- 兽医公共卫生学第十六章 兽医公共卫生监督管理概述
- 国家电网有限公司架空输电线路无人机作业管理规定
- 改革开放与新时代智慧树知到期末考试答案2024年
评论
0/150
提交评论