山东师范大学附中2025届高三最后一卷数学试卷含解析_第1页
山东师范大学附中2025届高三最后一卷数学试卷含解析_第2页
山东师范大学附中2025届高三最后一卷数学试卷含解析_第3页
山东师范大学附中2025届高三最后一卷数学试卷含解析_第4页
山东师范大学附中2025届高三最后一卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东师范大学附中2025届高三最后一卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,若输出的,则输入的整数的最大值为()A.7 B.15 C.31 D.632.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为()A. B. C. D.3.已知公差不为0的等差数列的前项的和为,,且成等比数列,则()A.56 B.72 C.88 D.404.公差不为零的等差数列{an}中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列{an}的公差等于()A.1 B.2 C.3 D.45.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A. B. C.2或 D.2或6.在正方体中,E是棱的中点,F是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的是()A.点F的轨迹是一条线段 B.与BE是异面直线C.与不可能平行 D.三棱锥的体积为定值7.已知等差数列的前项和为,且,则()A.45 B.42 C.25 D.368.已知等差数列中,,,则数列的前10项和()A.100 B.210 C.380 D.4009.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.10.若的展开式中的常数项为-12,则实数的值为()A.-2 B.-3 C.2 D.311.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A. B. C. D.12.设为虚数单位,为复数,若为实数,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数与函数,在公共点处有共同的切线,则实数的值为______.14.展开式中的系数为________.15.设等比数列的前项和为,若,则数列的公比是.16.已知平面向量与的夹角为,,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年,月利率为0.004.(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:.18.(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.19.(12分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.20.(12分)如图,D是在△ABC边AC上的一点,△BCD面积是△ABD面积的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求边AC的长.21.(12分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.22.(10分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:由程序框图可知:①,;②,;③,;④,;⑤,.第⑤步后输出,此时,则的最大值为15,故选B.考点:程序框图.2、D【解析】

根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.3、B【解析】

,将代入,求得公差d,再利用等差数列的前n项和公式计算即可.【详解】由已知,,,故,解得或(舍),故,.故选:B.【点睛】本题考查等差数列的前n项和公式,考查等差数列基本量的计算,是一道容易题.4、B【解析】

设数列的公差为.由,成等比数列,列关于的方程组,即求公差.【详解】设数列的公差为,①.成等比数列,②,解①②可得.故选:.【点睛】本题考查等差数列基本量的计算,属于基础题.5、C【解析】

由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.6、C【解析】

分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断.【详解】对于,设平面与直线交于点,连接、,则为的中点分别取、的中点、,连接、、,,平面,平面,平面.同理可得平面,、是平面内的相交直线平面平面,由此结合平面,可得直线平面,即点是线段上上的动点.正确.对于,平面平面,和平面相交,与是异面直线,正确.对于,由知,平面平面,与不可能平行,错误.对于,因为,则到平面的距离是定值,三棱锥的体积为定值,所以正确;故选:.【点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.7、D【解析】

由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D【点睛】本题考查等差数列的性质,考查等差数列的前项和.8、B【解析】

设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,,,.故选:B.【点睛】本题考查等差数列的基本量计算以及前项和,属于基础题.9、A【解析】

分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.10、C【解析】

先研究的展开式的通项,再分中,取和两种情况求解.【详解】因为的展开式的通项为,所以的展开式中的常数项为:,解得,故选:C.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.11、B【解析】

根据f(x)为偶函数便可求出m=0,从而f(x)=﹣1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选B.【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.12、B【解析】

可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

函数的定义域为,求出导函数,利用曲线与曲线公共点为由于在公共点处有共同的切线,解得,,联立解得的值.【详解】解:函数的定义域为,,,设曲线与曲线公共点为,由于在公共点处有共同的切线,∴,解得,.由,可得.联立,解得.故答案为:.【点睛】本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是中档题.14、30【解析】

先将问题转化为二项式的系数问题,利用二项展开式的通项公式求出展开式的第项,令的指数分别等于2,4,求出特定项的系数.【详解】由题可得:展开式中的系数等于二项式展开式中的指数为2和4时的系数之和,由于二项式的通项公式为,令,得展开式的的系数为,令,得展开式的的系数为,所以展开式中的系数,故答案为30.【点睛】本题考查利用二项式展开式的通项公式解决二项展开式的特定项的问题,考查学生的转化能力,属于基础题.15、.【解析】

当q=1时,.当时,,所以.16、【解析】

根据已知求出,利用向量的运算律,求出即可.【详解】由可得,则,所以.故答案为:【点睛】本题考查向量的模、向量的数量积运算,考查计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)289200元;(2)能够获批;(3)应选择等额本金还款方式【解析】

(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,即可由等差数列的前n项和公式求得其还款总额,减去本金即为还款的利息;(2)根据题意,采取等额本息的还款方式,每月还款额为一等比数列,设小张每月还款额为元,由等比数列求和公式及参考数据,即可求得其还款额,与收入的一半比较即可判断;(3)计算出等额本息还款方式时所付出的总利息,两个利息比较即可判断.【详解】(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,记为,表示数列的前项和,则,,则,故小张该笔贷款的总利息为元.(2)设小张每月还款额为元,采取等额本息的还款方式,每月还款额为一等比数列,则,所以,即,因为,所以小张该笔贷款能够获批.(3)小张采取等额本息贷款方式的总利息为:,因为,所以从经济利益的角度来考虑,小张应选择等额本金还款方式.【点睛】本题考查了等差数列与等比数列求和公式的综合应用,数列在实际问题中的应用,理解题意是解决问题的关键,属于中档题.18、(1),.(2)见解析【解析】

(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2)由(1)知,,即,由,得,,当且仅当,即,时等号成立.故,即.【点睛】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.19、(1)(2)见解析(3)存在唯一的等差数列,其通项公式为,满足题设【解析】

(1)由,可得公比,即得;(2)由(1)和可得数列的递推公式,即可知结果为常数,即得证;(3)由(2)可得数列的通项公式,,设出等差数列,再根据不等关系来算出的首项和公差即可.【详解】(1)设等比数列的公比为q,因为,,所以,解得.所以数列的通项公式为:.(2)由(1)得,当,时,可得①,②②①得,,则有,即,,.因为,由①得,,所以,所以,.所以数列是以为首项,1为公差的等差数列.(3)由(2)得,所以,.假设存在等差数列,其通项,使得对任意,都有,即对任意,都有.③首先证明满足③的.若不然,,则,或.(i)若,则当,时,,这与矛盾.(ii)若,则当,时,.而,,所以.故,这与矛盾.所以.其次证明:当时,.因为,所以在上单调递增,所以,当时,.所以当,时,.再次证明.(iii)若时,则当,,,,这与③矛盾.(iv)若时,同(i)可得矛盾.所以.当时,因为,,所以对任意,都有.所以,.综上,存在唯一的等差数列,其通项公式为,满足题设.【点睛】本题考查求等比数列通项公式,证明等差数列,以及数列中的探索性问题,是一道数列综合题,考查学生的分析,推理能力.20、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)利用三角形面积公式以及并结合正弦定理,可得结果.(Ⅱ)根据,可得,然后使用余弦定理,可得结果.【详解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以边.【点睛】本题考查三角形面积公式,正弦定理以及余弦定理的应用,关键在于识记公式,属中档题.21、(1)为增区间;为减区间.见解析(2)见解析【解析】

(1)先求得的定义域,然后利用导数求得的单调区间,结合零点存在性定理判断出有唯一零点.(2)求得的导函数,结合在区间上不单调,证得,通过证明,证得成立.【详解】(1)∵函数的定义域为,由,解得为增区间;由解得为减区间.下面证明函数只

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论