版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届天津市滨海新区七所重点中学高考数学五模试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正四面体的棱长为,是该正四面体外接球球心,且,,则()A. B.C. D.2.已知等比数列满足,,则()A. B. C. D.3.已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若,则双曲线的离心率为()A. B. C.4 D.24.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于()A. B.8 C. D.45.某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,,分组,绘成频率分布直方图如下:嘉宾评分嘉宾评分的平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是()A. B. C. D.6.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是()A. B. C. D.7.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市月至月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是()A.1月至8月空气合格天数超过天的月份有个B.第二季度与第一季度相比,空气达标天数的比重下降了C.8月是空气质量最好的一个月D.6月份的空气质量最差.8.设函数若关于的方程有四个实数解,其中,则的取值范围是()A. B. C. D.9.函数的大致图象为A. B.C. D.10.函数图像可能是()A. B. C. D.11.已知全集为,集合,则()A. B. C. D.12.已知数列为等差数列,且,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是函数的极大值点,则的取值范围是____________.14.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)15.在正奇数非减数列中,每个正奇数出现次.已知存在整数、、,对所有的整数满足,其中表示不超过的最大整数.则等于______.16.若实数x,y满足约束条件,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和曲线的极坐标方程;(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.18.(12分)车工刘师傅利用数控车床为某公司加工一种高科技易损零件,对之前加工的100个零件的加工时间进行统计,结果如下:加工1个零件用时(分钟)20253035频数(个)15304015以加工这100个零件用时的频率代替概率.(1)求的分布列与数学期望;(2)刘师傅准备给几个徒弟做一个加工该零件的讲座,用时40分钟,另外他打算在讲座前、讲座后各加工1个该零件作示范.求刘师傅讲座及加工2个零件作示范的总时间不超过100分钟的概率.19.(12分)已知在平面四边形中,的面积为.(1)求的长;(2)已知,为锐角,求.20.(12分)某商场以分期付款方式销售某种商品,根据以往资料统计,顾客购买该商品选择分期付款的期数的分布列为:2340.4其中,(Ⅰ)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(Ⅱ)商场销售一件该商品,若顾客选择分2期付款,则商场获得利润l00元,若顾客选择分3期付款,则商场获得利润150元,若顾客选择分4期付款,则商场获得利润200元.商场销售两件该商品所获的利润记为(单位:元)(ⅰ)求的分布列;(ⅱ)若,求的数学期望的最大值.21.(12分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.(1)求椭圆的标准方程;(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当时,直线过定点.22.(10分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点.(Ⅰ)若线段的中点坐标为,求直线的方程;(Ⅱ)若直线过点,点满足(,分别为直线,的斜率),求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,,,在直角三角形中,,,,,,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.2、B【解析】由a1+a3+a5=21得a3+a5+a7=,选B.3、D【解析】
设,,,根据可得①,再根据又②,由①②可得,化简可得,即可求出离心率.【详解】解:设,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故选:D.【点睛】本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题.4、C【解析】
将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.【详解】F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故选C.【点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.5、C【解析】
计算出、,进而可得出结论.【详解】由表格中的数据可知,,由频率分布直方图可知,,则,由于场外有数万名观众,所以,.故选:B.【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.6、A【解析】
根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.7、D【解析】由图表可知月空气质量合格天气只有天,月份的空气质量最差.故本题答案选.8、B【解析】
画出函数图像,根据图像知:,,,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.9、A【解析】
因为,所以函数是偶函数,排除B、D,又,排除C,故选A.10、D【解析】
先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.11、D【解析】
对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,再由交集的定义求解即可.【详解】,,.故选:D【点睛】本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.12、B【解析】
由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.【详解】解:由等差数列的性质可得,解得,,故选:B.【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
方法一:令,则,,当,时,,单调递减,∴时,,,且,∴在上单调递增,时,,,且,∴在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,,所以,这与是函数的极大值点矛盾.综上,.方法二:依据极值的定义,要使是函数的极大值点,由知须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得.14、【解析】
根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解.【详解】棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和.将平面绕旋转至与平面共面的位置,如下图所示:则,所以;将平面绕旋转至与平面共面的位置,将绕旋转至与平面共面的位置,如下图所示:则,所以;因为,且由诱导公式可得,所以最短距离为,故答案为:.【点睛】本题考查了空间几何体中最短距离的求法,注意将空间几何体展开至同一平面内求解的方法,三角函数诱导公式的应用,综合性强,属于难题.15、2【解析】
将已知数列分组为(1),,共个组.设在第组,,则有,即.注意到,解得.所以,.因此,.故.16、3【解析】
作出可行域,可得当直线经过点时,取得最大值,求解即可.【详解】作出可行域(如下图阴影部分),联立,可求得点,当直线经过点时,.故答案为:3.【点睛】本题考查线性规划,考查数形结合的数学思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)先把直线和曲线的参数方程化成普通方程,再化成极坐标方程;(2)联立极坐标方程,根据极径的几何意义可得,再由面积可解得极角,从而可得.【详解】(1)直线的参数方程是为参数),消去参数得直角坐标方程为:.转换为极坐标方程为:,即.曲线的参数方程是(为参数),转换为直角坐标方程为:,化为一般式得化为极坐标方程为:.
(2)由于,得,.所以,所以,由于,所以,所以.【点睛】本题主要考查参数方程与普通方程的互化、直角坐标方程与极坐标方程的互化,熟记公式即可,属于常考题型.18、(1)分布列见解析,;(2)0.8575【解析】
(1)根据题目所给数据求得分布列,并计算出数学期望.(2)根据对立事件概率计算公式、相互独立事件概率计算公式,计算出刘师傅讲座及加工个零件作示范的总时间不超过分钟的概率.【详解】(1)的分布列如下:202530350.150.300.400.15.(2)设,分别表示讲座前、讲座后加工该零件所需时间,事件表示“留师傅讲座及加工两个零件示范的总时间不超过100分钟”,则.【点睛】本小题主要考查随机变量分布列和数学期望的求法,考查对立事件概率计算,考查相互独立事件概率计算,属于中档题.19、(1);(2)4.【解析】
(1)利用三角形的面积公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,进而求得,利用同角三角函数的基本关系式求得.【详解】(1)在中,由面积公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,为锐角.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形面积公式,考查同角三角函数的基本关系式,属于中档题.20、(Ⅰ)0.288(Ⅱ)(ⅰ)见解析(ⅱ)数学期望的最大值为280【解析】
(Ⅰ)根据题意,设购买该商品的3位顾客中,选择分2期付款的人数为,由独立重复事件的特点得出,利用二项分布的概率公式,即可求出结果;(Ⅱ)(ⅰ)依题意,的取值为200,250,300,350,400,根据离散型分布求出概率和的分布列;(ⅱ)由题意知,,解得,根据的分布列,得出的数学期望,结合,即可算出的最大值.【详解】解:(Ⅰ)设购买该商品的3位顾客中,选择分2期付款的人数为,则,则,故购买该商品的3位顾客中,恰有2位选择分2期付款的概率为0.288.(Ⅱ)(ⅰ)依题意,的取值为200,250,300,350,400,,,,,的分布列为:2002503003504000.16(ⅱ),由题意知,,,,,又,即,解得,,,当时,的最大值为280,所以的数学期望的最大值为280.【点睛】本题考查独立重复事件和二项分布的应用,以及离散型分布列和数学期望,考查计算能力.21、(1);(2)见解析.【解析】
(1)在中,计算出的值,可得出的值,进而可得出的值,由此可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线方程与椭圆方程联立,列出韦达定理,根据已知条件得出,利用韦达定理和斜率公式化简得出与所满足的关系式,代入直线的方程,即可得出直线所过定点的坐标.【详解】(1)在中,,,,,,,,因此,椭圆的标准方程为;(2)由题不妨设,设点,联立,消去化简得,且,,,,,∴代入,化简得,化简得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024学生会部长工作计划范文
- 政治必修四教学计划
- 职员职位工作阶段计划
- 小学一年级秋季班主任的工作计划
- 国培发展规划参加“国培计划”培训专业发展规划
- 2024年社区家长学校工作计划模板
- 2024年中学教学工作计划范文
- 2024202X学年第二学期工作计划
- 临沂大学《大学物理Ⅰ》2021-2022学年第一学期期末试卷
- 2024学年度第一学期幼儿园中班工作计划
- 期末测试卷(一)2024-2025学年 人教版PEP英语五年级上册(含答案含听力原文无听力音频)
- 园长培训:自主游戏材料投放策略
- 生产车间统计员培训
- 期末 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 2024中国慢性阻塞性肺疾病基层诊疗与管理指南解读
- 学习课件教程教学课件
- 电商培训机构学员培训合同(2篇)
- 高素质农民培训合同
- 2024年港股通知识测评试题
- 中华传统文化之戏曲瑰宝学习通超星期末考试答案章节答案2024年
- 贵州省2024年中考化学真题(含答案)
评论
0/150
提交评论