华东师范大学《人工智能基础》2022-2023学年第一学期期末试卷_第1页
华东师范大学《人工智能基础》2022-2023学年第一学期期末试卷_第2页
华东师范大学《人工智能基础》2022-2023学年第一学期期末试卷_第3页
华东师范大学《人工智能基础》2022-2023学年第一学期期末试卷_第4页
华东师范大学《人工智能基础》2022-2023学年第一学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第1页,共3页华东师范大学

《人工智能基础》2022-2023学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在人工智能的图像识别任务中,对抗样本的存在对模型的安全性构成威胁。假设一个图像识别模型容易受到对抗样本的攻击,导致错误的分类结果。以下哪种方法在提高模型对对抗样本的鲁棒性方面最为有效?()A.数据增强B.模型正则化C.对抗训练D.以上方法综合运用2、在人工智能的文本分类任务中,除了传统的机器学习算法,深度学习方法也取得了很好的效果。以下关于文本分类中深度学习方法的描述,哪一项是不准确的?()A.可以自动学习文本的特征表示B.对于长文本的处理能力优于短文本C.不需要进行特征工程D.训练数据量越大,效果一定越好3、在深度学习中,BatchNormalization的作用是()A.加速训练B.防止过拟合C.提高模型精度D.以上都是4、人工智能在自动驾驶领域的应用具有巨大的潜力,但也面临诸多挑战。假设一辆自动驾驶汽车正在道路上行驶,以下关于自动驾驶中的人工智能技术的描述,正确的是:()A.自动驾驶汽车完全依赖传感器数据和人工智能算法,不需要人类驾驶员的任何干预B.人工智能算法能够在所有复杂的交通场景中做出完美的决策,不会出现错误C.自动驾驶系统需要融合多种传感器数据,并通过深度学习算法进行实时的环境感知和决策制定D.自动驾驶中的人工智能技术已经非常成熟,不存在任何安全隐患5、在人工智能的图像语义分割任务中,需要将图像中的每个像素分配到不同的类别,例如将一幅街景图像中的道路、建筑物、车辆等区分开来。假设图像中的物体边界模糊、类别多样,以下哪种方法能够提高语义分割的精度?()A.使用更高分辨率的图像进行训练B.采用简单的分割算法,降低计算复杂度C.忽略物体边界的像素,只关注主要区域D.不进行任何预处理,直接对原始图像进行分割6、人工智能在医疗影像诊断中的应用越来越广泛。假设利用人工智能辅助医生诊断X光片,以下关于其应用的描述,哪一项是不正确的?()A.能够快速检测出影像中的异常区域,提高诊断效率B.可以为医生提供量化的分析指标和辅助诊断建议C.人工智能的诊断结果总是准确无误的,医生可以完全依赖D.医生的专业知识和临床经验在结合人工智能诊断结果时仍然非常重要7、人工智能中的深度学习模型通常需要大量的计算资源进行训练。假设一个研究团队资源有限。以下关于在有限资源下训练模型的策略描述,哪一项是不正确的?()A.可以使用数据增强技术,通过对原始数据进行随机变换来增加数据量B.选择轻量级的模型架构,减少参数数量和计算量C.降低模型的训练精度,如使用低精度数值表示,以加快训练速度D.为了保证模型性能,无论资源如何有限,都不能对模型进行任何简化和压缩8、在人工智能的文本分类任务中,例如将新闻文章分类为政治、经济、体育等类别。假设数据集存在类别不平衡的问题,某些类别的样本数量远远多于其他类别。为了提高分类模型在这种情况下的性能,以下哪种方法是有效的?()A.对少数类进行过采样,增加其数量B.对多数类进行欠采样,减少其数量C.使用不平衡数据直接训练模型,不做处理D.只关注样本数量多的类别,忽略少数类别9、在人工智能的发展中,硬件的支持对于提高计算效率和性能至关重要。假设要训练一个大规模的深度学习模型,需要快速处理海量的数据。以下哪种硬件架构或设备在加速模型训练方面具有显著的优势?()A.CPUB.GPUC.TPUD.FPGA10、人工智能中的专家系统是一种基于知识的系统。假设有一个用于故障诊断的专家系统,需要将专家的知识和经验转化为系统的规则和推理机制。以下关于专家系统的描述,哪一项是不准确的?()A.专家系统的性能取决于知识的准确性和完整性B.专家系统能够处理不确定性和模糊性的知识C.专家系统的开发需要大量的时间和专业知识D.专家系统一旦开发完成,就不需要进行更新和维护11、在人工智能的目标检测任务中,假设要在图像中准确检测出多个不同类别的物体,以下关于目标检测算法的描述,正确的是:()A.基于传统特征的目标检测算法在复杂场景下的性能优于深度学习算法B.深度学习的目标检测算法,如FasterR-CNN,能够实现高精度的检测C.目标检测算法的性能只取决于模型的复杂度,与训练数据无关D.所有的目标检测算法都能够实时处理视频中的目标检测任务12、人工智能中的自动规划和调度问题在许多领域都有应用,如生产制造、物流配送等。假设一个工厂要安排生产任务,需要考虑机器的可用性、订单的优先级和交货日期等约束条件。以下哪种自动规划算法在处理这种复杂的约束满足问题上最为高效?()A.A*算法B.遗传算法C.模拟退火算法D.蚁群算法13、在人工智能的知识图谱构建中,需要整合大量的结构化和非结构化数据,以建立实体之间的关系。假设要构建一个关于历史人物和事件的知识图谱,以下哪种数据源对于丰富和准确的图谱构建是最有价值的?()A.百科全书和历史书籍B.社交媒体上的相关讨论C.个人博客和论坛帖子D.未经证实的网络传闻14、在人工智能的异常检测任务中,例如检测网络中的异常流量或金融交易中的欺诈行为。假设正常数据的模式较为复杂,而异常数据相对较少且具有多样性。以下哪种方法在这种情况下更适合进行异常检测?()A.基于统计的方法,设定阈值判断异常B.无监督学习方法,自动发现异常模式C.监督学习方法,使用有标注的异常数据进行训练D.人工检查所有数据,识别异常15、强化学习是人工智能中的一个重要领域,常用于训练智能体在环境中做出最优决策。假设一个机器人需要在一个充满障碍物的房间里找到通往目标位置的路径,同时避免碰撞。在这种情况下,以下关于强化学习的说法,哪一项是正确的?()A.智能体通过随机尝试不同的动作来学习最优策略B.奖励函数的设计对学习效果没有太大影响C.强化学习不需要考虑环境的动态变化D.一旦训练完成,智能体在新的环境中无需重新学习就能表现良好二、简答题(本大题共3个小题,共15分)1、(本题5分)解释机器翻译的原理和发展趋势。2、(本题5分)说明人工智能在水利和水资源管理中的潜力。3、(本题5分)解释人工智能在风险管理中的应用。三、操作题(本大题共5个小题,共25分)1、(本题5分)利用Python的TensorFlow库,构建一个深度强化学习模型,让智能体在连续动作空间中学习最优策略,评估模型的收敛速度和稳定性。2、(本题5分)利用TensorFlow构建一个异常检测模型,对工业传感器数据中的异常值进行检测,如设备故障、生产流程异常等。分析模型的检测灵敏度和误报率,研究如何提高模型对复杂异常模式的识别能力。3、(本题5分)利用Scikit-learn中的支持向量机(SVM)算法,对鸢尾花数据集进行多分类任务。通过核函数的选择和参数调整优化模型性能,绘制决策边界。4、(本题5分)使用Python中的Scikit-learn库,实现BIRCH聚类算法对大规模数据进行快速聚类,评估算法在处理大数据时的效率和效果。5、(本题5分)利用Scikit-learn中的K-Means聚类算法,对客户行为数据进行细分。为精准营销提供依据。四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论