版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.3简洁几何体的表面积与体积8.3.1棱柱、棱锥、棱台的表面积和体积课后篇巩固提升基础达标练1.(多选题)长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,则()A.长方体的表面积为20B.长方体的体积为6C.沿长方体的表面从A到C1的最短距离为3D.沿长方体的表面从A到C1的最短距离为2解析长方体的表面积为2×(3×2+3×1+2×1)=22,A错误.长方体的体积为3×2×1=6,B正确.如图①所示,在长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=1.在表面上求最短距离可把几何体绽开成平面图形,如图②所示,将侧面ABB1A1和侧面BCC1B1绽开,则有AC1=,即当经过侧面ABB1A1和侧面BCC1B1时的最短距离是;如图③所示,将侧面ABB1A1和底面A1B1C1D1绽开,则有AC1==3,即当经过侧面ABB1A1和底面A1B1C1D1时的最短距离是3;如图④所示,将侧面ADD1A1和底面A1B1C1D1绽开,则有AC1==2,即当经过侧面ADD1A1和底面A1B1C1D1时的最短距离是2.因为3<2,所以沿长方体表面从A到C1的最短距离是3,C正确,D不正确.答案BC2.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则三棱锥D-ACD1的体积是()A. B. C. D.1解析三棱锥D-ACD1的体积等于三棱锥D1-ACD的体积,三棱锥D1-ACD的底面ACD是直角边长为1的等腰直角三角形,高D1D=1,∴三棱锥D-ACD1的体积为V=×1×1×1=.答案A3.一个正四棱锥的底面边长为2,高为,则该正四棱锥的表面积为()A.8 B.12 C.16 D.20解析由题意得侧面三角形底边上的高为=2,所以该四棱锥的表面积为22+4××2×2=12.答案B4.正方体的棱长为2,以其全部面的中心为顶点的多面体的体积为()A.3π B. C.π D.1解析如图所示,由图可知,该几何体由两个四棱锥构成,并且这两个四棱锥体积相等.四棱锥的底面为正方形,且边长为,故底面积为()2=2;四棱锥的高为1,则四棱锥的体积为×2×1=.故几何体的体积为2×.答案B5.正三棱锥的底面周长为6,侧面都是直角三角形,则此棱锥的体积为()A. B. C. D.解析由题意,正三棱锥的底面周长为6,所以正三棱锥的底面边长为2,侧面均为直角三角形,可知侧棱长均为,三条侧棱两两垂直,所以此三棱锥的体积为.答案D6.(2024全国高一课时练习)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是.
解析因为长方体ABCD-A1B1C1D1的体积为120,所以AB·BC·CC1=120,因为E为CC1的中点,所以CE=CC1,由长方体的性质知CC1⊥底面ABCD,所以CE是三棱锥E-BCD的底面BCD上的高,所以三棱锥E-BCD的体积V=AB·BC·CE=AB·BC·CC1=×120=10.答案107.正四棱柱的一条体对角线长为9,表面积为144,适合这些条件的正四棱柱有个.
解析设底面边长为a,高为h,由题意得这个方程组有两个解,所以适合条件的正四棱柱有2个.答案28.已知某几何体是由两个全等的长方体和一个三棱柱组合而成,如图所示,其中长方体的长、宽、高分别为4,3,3,三棱柱底面是直角边分别为4,3的直角三角形,侧棱长为3,则此几何体的体积是,表面积是.
解析该几何体的体积V=4×6×3+×4×3×3=90,表面积S=2(4×6+4×3+6×3)-3×3+×4×3×2+×3+3×4=138.答案901389.在正四棱锥S-ABCD中,点O是底面中心,SO=2,侧棱SA=2,则该棱锥的体积为.
解析∵侧棱SA=2,高SO=2,∴AO==2,因此,底面正方形的边长AB=AO=4,底面积为AB2=16.该棱锥的体积为V=AB2·SO=×16×2=.答案10.有一个正四棱台形态的油槽,可以装油190L,假如它的两底面边长分别等于60cm和40cm,则它的深度为cm.
解析设油槽的上、下底面积分别为S',S.由V=(S++S')h,得h==75(cm).答案75实力提升练1.(2024山东济宁检测)我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭,令上方六尺,问亭方几何?”大致意思为“有一个正四棱锥下底面边长为二丈,高三丈,现从上面截去一段,使之成为正四棱台状方亭,且正四棱台的上底面边长为六尺,问该正四棱台的体积是多少立方尺?”(注:1丈=10尺)()A.1946立方尺B.3892立方尺C.7784立方尺D.11676立方尺解析由题意可知,正四棱锥的高为30,所截得正四棱台的下底面棱长为20,上底面棱长为6,设棱台的高为OO1=h,由△PA1O1∽△PAO可得,解得h=21,可得正四棱台的体积为×21×(62+202+6×20)=3892(立方尺),故选B.答案B2.(2024江西上饶检测)如图所示,在上、下底面对应边的比为1∶2的三棱台中,过上底面的一边A1B1和AC,BC的中点F,E作一个平面A1B1EF,记平面分三棱台两部分的体积为V1(三棱柱A1B1C1-FEC),V2两部分,那么V1∶V2=.
解析设三棱台的高为h,上底面的面积是S,则下底面的面积是4S,∴V棱台=h(S+4S+2S)=Sh,V1=Sh,∴.答案3∶43.(2024全国高一课时练习)如图,AA1,BB1,CC1相交于点O,形成两个顶点相对、底面水平的三棱锥容器,AO=A1O,BO=B1O,CO=C1O.设三棱锥高均为1,若上面三棱锥中装有高度为0.5的液体,且液体能流入下面的三棱锥,则液体流下去后液面高度为.
解析液体部分的体积为三棱锥体积的,流下去后,液体上方空出的三棱锥的体积为三棱锥体积的.设空出的三棱锥的高为x,则,所以x=,所以液面高度为1-.答案1-4.已知一个三棱柱的三视图如图所示,求这个三棱柱的侧面积.解由三视图易知,该三棱柱的底面为正三角形,各侧面为矩形,侧棱长为4cm,如图所示.因为正三角形ABC和正三角形A'B'C'的高为2cm,所以正三角形ABC的边长AB==4(cm).故三棱柱的侧面积为S侧=4×4×3=48(cm2).5.一个正三棱锥P-ABC的底面边长为a,高为h.一个正三棱柱A1B1C1-A0B0C0的顶点A1,B1,C1分别在三条棱上,A0,B0,C0分别在底面△ABC上,何时此三棱柱的侧面积取到最大值?解设三棱锥的底面中心为O,连接PO,图略,则PO为三棱锥的高,设A1,B1,C1所在的底面与PO交于O1点,则,令A1B1=x,而PO=h,则PO1=x,于是OO1=h-PO1=h-x=h.所以所求三棱柱的侧面积为S=3x·h(a-x)x=.当x=时,S有最大值为ah,此时O1为PO的中点,即A1,B1,C1分别是三条棱的中点.素养培优练在正三棱台ABC-A1B1C1中,已知AB=10,棱台一个侧面梯形的面积为,O1,O分别为上、下底面正三角形的中心,连接A1O1,AO并延长,分别交B1C1,BC于点D1,D,∠D1DA=60°,求上底面的边长.解∵AB=10,∴AD=AB=5,OD=AD=.设上底面的边长为x(x>
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏安全技术职业学院《法治政府概论》2023-2024学年第一学期期末试卷
- 2024年酒店管理服务尽调保密协议
- 黑龙江护理高等专科学校《可编程控制技术》2023-2024学年第一学期期末试卷
- 2024物业管理公司公共区域安全防范与监控服务合同3篇
- 2025年度智能物流仓储服务合同2篇
- 专用食品原料批量采购协议模板2024版B版
- 一体化物业管理与维护服务协议范本版B版
- 2024版设备供应及安装合作协议版B版
- 2025年度现代化美食广场联营项目合作协议3篇
- 专业吊装及国内外货物运输协议2024版版B版
- 消化内镜治疗新技术课件
- 小学语文作业分层设计分析
- 读者文章汇总 读者文摘100篇
- 现代文阅读之散文
- 山东省济南市高职单招2022-2023学年医学综合真题及答案
- 配色技术员工作计划工作总结述职报告PPT模板下载
- 挖掘机、装载机检验报告完整
- 小学科学三年级上册期末考试质量分析
- 从业人员在安全生产方面的权利和义务
- Architecture-古希腊古罗马建筑英文版
- 一年级语文教学工作总结优秀4篇
评论
0/150
提交评论