版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省豫南五市高考数学考前最后一卷预测卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种 B.360种 C.240种 D.120种2.己知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A. B.C. D.3.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.4.如图,在四边形中,,,,,,则的长度为()A. B.C. D.5.定义在上的偶函数,对,,且,有成立,已知,,,则,,的大小关系为()A. B. C. D.6.已知函数有两个不同的极值点,,若不等式有解,则的取值范围是()A. B.C. D.7.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是()A. B. C. D.8.若,,,则()A. B.C. D.9.已知函数,,则的极大值点为()A. B. C. D.10.的展开式中,满足的的系数之和为()A. B. C. D.11.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是()注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多12.在中,角的对边分别为,,若,,且,则的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)14.已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是__.15.设变量,满足约束条件,则目标函数的最小值为______.16.设满足约束条件且的最小值为7,则=_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在中,a、b、c分别为角A、B、C的对边,且.(1)求角A的值;(2)若,设角,周长为y,求的最大值.18.(12分)已知函数.(1)当时,求函数在处的切线方程;(2)若函数没有零点,求实数的取值范围.19.(12分)已知,,求证:(1);(2).20.(12分)已知函数.(1)求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.21.(12分)在直角坐标系中,已知圆,以原点为极点,x轴正半轴为极轴建立极坐标系,已知直线平分圆M的周长.(1)求圆M的半径和圆M的极坐标方程;(2)过原点作两条互相垂直的直线,其中与圆M交于O,A两点,与圆M交于O,B两点,求面积的最大值.22.(10分)如图,在三棱柱中,是边长为2的等边三角形,,,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,∴共有360种.故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.2、A【解析】
根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.【点睛】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.3、B【解析】
根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.4、D【解析】
设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【详解】设,在中,由余弦定理得,则,从而,由正弦定理得,即,从而,在中,由余弦定理得:,则.故选:D【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.5、A【解析】
根据偶函数的性质和单调性即可判断.【详解】解:对,,且,有在上递增因为定义在上的偶函数所以在上递减又因为,,所以故选:A【点睛】考查偶函数的性质以及单调性的应用,基础题.6、C【解析】
先求导得(),由于函数有两个不同的极值点,,转化为方程有两个不相等的正实数根,根据,,,求出的取值范围,而有解,通过分裂参数法和构造新函数,通过利用导数研究单调性、最值,即可得出的取值范围.【详解】由题可得:(),因为函数有两个不同的极值点,,所以方程有两个不相等的正实数根,于是有解得.若不等式有解,所以因为.设,,故在上单调递增,故,所以,所以的取值范围是.故选:C.【点睛】本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还考查分析和计算能力,有一定的难度.7、C【解析】
先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.8、C【解析】
利用指数函数和对数函数的单调性比较、、三个数与和的大小关系,进而可得出、、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.9、A【解析】
求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可.【详解】因为,故可得,令,因为,故可得或,则在区间单调递增,在单调递减,在单调递增,故的极大值点为.故选:A.【点睛】本题考查利用导数求函数的极值点,属基础题.10、B【解析】
,有,,三种情形,用中的系数乘以中的系数,然后相加可得.【详解】当时,的展开式中的系数为.当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为.故选:B.【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键.11、D【解析】
根据两个图形的数据进行观察比较,即可判断各选项的真假.【详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多.故选:D.【点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.12、C【解析】
由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.【详解】解:,,且,,化为:.,解得..故选:.【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、36【解析】
先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果.【详解】由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法.所以本题答案为36.【点睛】排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻、考虑周全,这样才能做到不重不漏,正确解题.14、2【解析】
由题,得,然后根据纯虚数的定义,即可得到本题答案.【详解】由题,得,又复数为纯虚数,所以,解得.故答案为:2【点睛】本题主要考查纯虚数定义的应用,属基础题.15、-8【解析】
通过约束条件,画出可行域,将问题转化为直线在轴截距最大的问题,通过图像解决.【详解】由题意可得可行域如下图所示:令,则即为在轴截距的最大值由图可知:当过时,在轴截距最大本题正确结果:【点睛】本题考查线性规划中的型最值的求解问题,关键在于将所求最值转化为在轴截距的问题.16、3【解析】
根据约束条件画出可行域,再把目标函数转化为,对参数a分类讨论,当时显然不满足题意;当时,直线经过可行域中的点A时,截距最小,即z有最小值,再由最小值为7,得出结果;当时,的截距没有最小值,即z没有最小值;当时,的截距没有最大值,即z没有最小值,综上可得出结果.【详解】根据约束条件画出可行域如下:由,可得出交点,由可得,当时显然不满足题意;当即时,由可行域可知当直线经过可行域中的点A时,截距最小,即z有最小值,即,解得或(舍);当即时,由可行域可知的截距没有最小值,即z没有最小值;当即时,根据可行域可知的截距没有最大值,即z没有最小值.综上可知满足条件时.故答案为:3.【点睛】本题主要考查线性规划问题,约束条件和目标函数中都有参数,要对参数进行讨论.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用正弦定理,结合题中条件,可以得到,之后应用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周长,利用三角函数的最值求解即可.【详解】(1)由已知可得,结合正弦定理可得,∴,又,∴.(2)由,及正弦定理得,∴,,故,即,由,得,∴当,即时,.【点睛】该题主要考查的是有关解三角形的问题,解题的关键是掌握正余弦定理,属于简单题目.18、(1).(2)【解析】
(1)利用导数的几何意义求解即可;(2)利用导数得出的单调性以及极值,从而得出的图象,将函数的零点问题转化为函数图象的交点问题,由图,即可得出实数的取值范围.【详解】(1)当时,,∴切线斜率,又切点∴切线方程为,即.(2),记,令得;∴的情况如下表:2+0单调递增极大值单调递减当时,取极大值又时,;时,若没有零点,即的图像与直线无公共点,由图像知的取值范围是.【点睛】本题主要考查了导数的几何意义的应用,利用导数研究函数的零点问题,属于中档题.19、(1)见解析;(2)见解析.【解析】
(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论.【详解】(1)∵,∴,当且仅当a=b=c等号成立,∴;(2)由基本不等式,∴,同理,,∴,当且仅当a=b=c等号成立∴.【点睛】本题考查不等式的证明,考查用基本不等式证明不等式成立.解题关键是发现基本不等式的形式,方法是综合法.20、(1)(2)【解析】
(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为,求出在上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值.【详解】解:(1)或或解得或或无解综上不等式的解集为.(2)时,,即所以只需在时恒成立即可令,由解析式得在上是增函数,∴当时,即【点睛】本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是常用方法.掌握分类讨论思想是解题关键.21、(1),(2)【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新沪教版(五四制)八年级数学上册全册学案(学生版+教师版)
- 上海地区标准化二手房买卖协议模板版A版
- 医疗文献的阅读与写作技巧
- 2025年鲁教新版高一英语下册月考试卷含答案
- 技术驱动的家庭营养与饮食革新案例研究
- 2025年华师大新版七年级地理下册阶段测试试卷
- 技术性行业实验室的教学与管理研究
- 二零二五年度集团高层管理人员年度考核聘任合同3篇
- 2025年教科新版高二地理上册月考试卷
- 工业互联网平台的跨行业应用与前景展望
- 天津市新版就业、劳动合同登记名册
- 数学分析知识点的总结
- 产科操作技术规范范本
- 2023年重症医学科护理工作计划
- 年会抽奖券可编辑模板
- 感染性疾病标志物及快速诊断课件(PPT 134页)
- YC∕T 273-2014 卷烟包装设计要求
- 2022年煤矿地面消防应急预案范文
- 高中化学必修二第三章第一节认识有机化合物课件
- 水上抛石护坡施工方案
- 4PL的供应链整合及其对区域发展的借鉴意义
评论
0/150
提交评论