版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省枣阳市白水高级中学2024年高三数学试题第五次模拟考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有()A.60种 B.70种 C.75种 D.150种2.若,则“”的一个充分不必要条件是A. B.C.且 D.或3.已知函数,,且,则()A.3 B.3或7 C.5 D.5或84.已知是函数的极大值点,则的取值范围是A. B.C. D.5.如图,已知平面,,、是直线上的两点,、是平面内的两点,且,,,,.是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是()A. B. C. D.6.过抛物线的焦点作直线交抛物线于两点,若线段中点的横坐标为3,且,则抛物线的方程是()A. B. C. D.7.已知向量,且,则m=()A.−8 B.−6C.6 D.88.执行如图所示的程序框图,则输出的值为()A. B. C. D.9.下列函数中,既是偶函数又在区间上单调递增的是()A. B. C. D.10.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.11.已知,,由程序框图输出的为()A.1 B.0 C. D.12.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)14.的展开式中所有项的系数和为______,常数项为______.15.函数的图象在处的切线方程为__________.16.关于函数有下列四个命题:①函数在上是增函数;②函数的图象关于中心对称;③不存在斜率小于且与函数的图象相切的直线;④函数的导函数不存在极小值.其中正确的命题有______.(写出所有正确命题的序号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,侧面为等腰直角三角形,平面.(1)求证:平面;(2)求直线与平面所成的角的正弦值.18.(12分)改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.求的值,并估计该城市驾驶员交通安全意识强的概率;已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;安全意识强安全意识不强合计男性女性合计用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.附:其中19.(12分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;(2)若,求二面角的余弦值.20.(12分)已知某种细菌的适宜生长温度为12℃~27℃,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:℃)变化的规律,收集数据如下:温度/℃14161820222426繁殖数量/个2530385066120218对数据进行初步处理后,得到了一些统计量的值,如表所示:20784.11123.8159020.5其中,.(1)请绘出关于的散点图,并根据散点图判断与哪一个更适合作为该种细菌的繁殖数量关于温度的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表格数据,建立关于的回归方程(结果精确到0.1);(3)当温度为27℃时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据,其回归直线的斜率和截距的最小二成估计分别为,,参考数据:.21.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.22.(10分)已知各项均不相等的等差数列的前项和为,且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案.【详解】解:根据题意,从6名男干部中选出2名男干部,有种取法,从5名女干部中选出1名女干部,有种取法,则有种不同的选法;故选:C.【点睛】本题考查排列组合的应用,涉及分步计数原理问题,属于基础题.2、C【解析】,∴,当且仅当时取等号.故“且”是“”的充分不必要条件.选C.3、B【解析】
根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题4、B【解析】
方法一:令,则,,当,时,,单调递减,∴时,,,且,∴,即在上单调递增,时,,,且,∴,即在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,所以,这与是函数的极大值点矛盾.综上,.故选B.方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得,故选B.5、B【解析】
为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,,,,同理为直线与平面所成的角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选【点睛】本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.6、B【解析】
利用抛物线的定义可得,,把线段AB中点的横坐标为3,代入可得p值,然后可得出抛物线的方程.【详解】设抛物线的焦点为F,设点,由抛物线的定义可知,线段AB中点的横坐标为3,又,,可得,所以抛物线方程为.故选:B.【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.7、D【解析】
由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.8、B【解析】
列出每一次循环,直到计数变量满足退出循环.【详解】第一次循环:;第二次循环:;第三次循环:,退出循环,输出的为.故选:B.【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.9、C【解析】
结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.10、A【解析】
根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.11、D【解析】试题分析:,,所以,所以由程序框图输出的为.故选D.考点:1、程序框图;2、定积分.12、D【解析】
由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积.【详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即=60°,由底面边长为3得,∴.正三棱锥外接球球心必在上,设球半径为,则由得,解得,∴.故选:D.【点睛】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、36【解析】
先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果.【详解】由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法.所以本题答案为36.【点睛】排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻、考虑周全,这样才能做到不重不漏,正确解题.14、3-260【解析】
(1)令求得所有项的系数和;(2)先求出展开式中的常数项与含的系数,再求展开式中的常数项.【详解】将代入,得所有项的系数和为3.因为的展开式中含的项为,的展开式中含常数项,所以的展开式中的常数项为.故答案为:3;-260【点睛】本题考查利用二项展开式的通项公式解决二项展开式的特殊项问题,属于基础题.15、【解析】
利用导数的几何意义,对求导后在计算在处导函数的值,再利用点斜式列出方程化简即可.【详解】,则切线的斜率为.又,所以函数的图象在处的切线方程为,即.故答案为:【点睛】本题主要考查了根据导数的几何意义求解函数在某点处的切线方程问题,需要注意求导法则与计算,属于基础题.16、①②③【解析】
由单调性、对称性概念、导数的几何意义、导数与极值的关系进行判断.【详解】函数的定义域是,由于,在上递增,∴函数在上是递增,①正确;,∴函数的图象关于中心对称,②正确;,时取等号,∴③正确;,设,则,显然是即的极小值点,④错误.故答案为:①②③.【点睛】本题考查函数的单调性、对称性,考查导数的几何意义、导数与极值,解题时按照相关概念判断即可,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)根据平面,利用线面垂直的定义可得,再由,根据线面垂直的判定定理即可证出.(2)取的中点,连接,以为坐标原点,分别为正半轴建立空间直角坐标系求出平面的一个法向量,利用空间向量法即可求解.【详解】因为平面平面,所以由为等腰直角三角形,所以又,故平面.取的中点,连接,因为,所以因为平面,所以平面所以平面如图,以为坐标原点,分别为正半轴建立空间直角坐标系则,又,所以且于是设平面的法向量为,则令得平面的一个法向量设直线与平面所成的角为,则【点睛】本题考查了线面垂直的定义、判定定理以及空间向量法求线面角,属于中档题.18、,概率为;列联表详见解析,有的把握认为交通安全意识与性别有关;.【解析】
根据频率和为列方程求得的值,计算得分在分以上的频率即可;根据题意填写列联表,计算的值,对照临界值得出结论;用分层抽样法求得抽取各分数段人数,用列举法求出基本事件数,计算所求的概率值.【详解】解:解得.所以,该城市驾驶员交通安全意识强的概率根据题意可知,安全意识强的人数有,其中男性为人,女性为人,填写列联表如下:安全意识强安全意识不强合计男性女性合计所以有的把握认为交通安全意识与性别有关.由题意可知分数在,的分别为名和名,所以分层抽取的人数分别为名和名,设的为,,的为,,,,则基本事件空间为,,,,,,,,,,,,,,共种,设至少有人得分低于分的事件为,则事件包含的基本事件有,,,,,,,,共种所以.【点睛】本题考查独立性检验应用问题,也考查了列举法求古典概型的概率问题,属于中档题.19、(1)证明见解析;(2).【解析】
(1)取BC的中点O,则,由是等边三角形,得,从而得到平面,由此能证明(2)以,,所在直线分别为x,y,z轴建立空间直角坐标系,利用向量法求得二面角的余弦值,得到结果.【详解】(1)取BC的中点O,连接,,由于与是等边三角形,所以有,,且,所以平面,平面,所以.(2)设,是全等的等边三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直线分别为x,y,z轴建立空间直角坐标系,如图所示,则,,,设平面的一个法向量为,则,令,则,又平面的一个法向量为,所以二面角的余弦值为,即二面角的余弦值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利用线面垂直证明线性垂直,利用向量法求二面角的余弦值,属于中档题目.20、(1)作图见解析;更适合(2)(3)预报
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度货物运输合同风险评估与保险服务方案3篇
- 2025年度针对性学科家教服务合同(含心理辅导)3篇
- 共有产权房交易模板
- 展览馆承台施工合同
- 生产流程优化措施的通知
- 挖掘机地热能开发合同
- 临时科技研发基地租赁合同
- 2024年版详解云计算服务与支持合同
- 地铁站供热系统安装合同
- 建材行业烟囱安装合同模板
- 【MOOC】PLC技术及应用(三菱FX系列)-职教MOOC建设委员会 中国大学慕课MOOC答案
- 2023七年级英语下册 Unit 3 How do you get to school Section A 第1课时(1a-2e)教案 (新版)人教新目标版
- 泌尿科主任述职报告
- 新零售门店运营管理流程手册
- 心理学专业知识考试参考题库500题(含答案)(一)
- 2024年浙江高考技术试题(含答案)
- 资管行业投研一体化建设
- 物业费收取协议书模板
- 电工(中级工)理论知识练习题(附参考答案)
- 起重机的维护保养要求与月度、年度检查记录表
- 消防设施维护保养记录表
评论
0/150
提交评论