版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
探索二次函数综合题解题技巧类型一线段数量关系的探究问题例:(2015•贵港)如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴I上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;方法指导:设点坐标:若所求点在x轴上可设(x,0),在y轴上可设(0,y);若所求的点在抛物线上时,该点的坐标可以设为(x,ax2+bx+c);若所求的点在对称轴上时,该点的坐标可以设为(-,y);若所求的点在已知直线y=kx+b上时,该点的坐标可以设为(x,kx+b),常用所设点坐标表示出相应几何图形的边长.简单概括就是规则与不规则线段的表示:规则:横平竖直。横平就是右减左,竖直就是上减下,不能确定点的左右上下位置就加绝对值。不规则:两点间距离公式根据已知条件列出满足线段数量关系的等式,进而求出未知数的值;类型二图形面积数量关系及最值的探究问题例:(2015•贵港)如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴I上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.1.三角形面积最值.分规则与不规则。有底或者高落在坐标轴上或者与坐标轴平行属于规则,直接用面积公式求解。没有底或者高落在坐标轴或平行于坐标轴属于不规则,用割补法。2.四边形面积最值。常用到的方法是利用割补法将四边形分成两个三角形(常作平行于坐标轴的直线来分割四边形面积),其求法同三角形.类型三特殊三角形的探究问题例(2016枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.(1)若直线y=mx+n经过B,C两点,求抛物线和直线BC的解析式;(2)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.(1)求该抛物线的解析式和对称轴,并写出线段BC的中点坐标;(2)将线段BC先向左平移2个单位长度,在向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,求此时点C1的坐标和m的值;(3)若点P是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C四点为顶点的四边形是平行四边形时,求此时点P的坐标探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标.一般会用到菱形的对角线互相垂直平分、四边相等等性质列关系式.探究正方形:利用正方形对角线互相平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解例1如图,抛物线y=-x2+bx+c的图象过点A(4,0),B(-4,-4),且抛物线与y轴交于点C,连接AB,BC,AC.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的点,求△PBC周长的最小值及此时点P的坐标;(3)若E是线段AB上的一个动点(不与A、B重合),过E作y轴的平行线,分别交抛物线及x轴于F、D两点.请问是否存在这样的点E,使DE=2DF?若存在,请求出点E的坐标;若不存在,请说明理由.例2如图,已知抛物线y=-x2+bx+c与坐标轴分别交于点A(0,8),B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C,D同时出发,当动点D到达原点O时,点C,D停止运动.(1)直接写出抛物线的解析式:;(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度跨境电商平台100%股权出让协议3篇
- 2024某书法家与某拍卖行之间关于书法作品拍卖之合作协议
- 广西桂林市2025年中考语文模拟试题三套【附参考答案】
- 18书湖阴先生壁 说课稿-2024-2025学年六年级上册语文统编版
- 2024年运动场地使用权转让合同
- 16《朱德扁担》第一课时 说课稿-2024-2025学年语文二年级上册统编版
- 2024文化墙环保材料供应及安装一体化工程合同3篇
- 2024年通信行业保密合同精简版范文版
- 2024浴池租赁合同-温泉度假村合作管理服务协议3篇
- 2024某电商平台与某物流公司关于2024年物流服务合同
- 房屋租赁管理条例2024年
- 《文献检索与论文写作》教学大纲思政版
- 《成人有创机械通气气道内吸引技术操作》标准解读
- 档案馆查资料委托书
- 高中数学人教A版必修第一册 全册 思维导图
- 【基于自由现金流贴现法的企业估值的案例探析3300字(论文)】
- 江门市广雅中学2023-2024学年七年级下学期月考数学试题 (B卷)
- 铸件工艺性分析报告
- 船舶维修抢修方案
- 九年级初三中考物理综合复习测试卷3套(含答案)
- (正式版)JTT 1218.5-2024 城市轨道交通运营设备维修与更新技术规范 第5部分:通信
评论
0/150
提交评论