版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题:共点力平衡的应用授课教师:戴秋恋2024年5月22日受力分析一般步骤受力分析√受力分析√受力分析√“活结”和“死结”活结:
当绳绕过光滑的滑轮或挂钩时,绳上的力是相等的,即滑轮只改变力的方向,不改变力的大小,如图甲,滑轮B两侧绳的拉力相等死结:
若结点不是滑轮,而是固定点时,称为“死结”结点,则两侧绳上的弹力不一定相等,如图乙,结点B两侧绳的拉力不相等“活结”和“死结”例:如图,悬挂甲物体的细线拴牢在一不可伸长的轻质细绳上O点处,绳的一端固定在墙上,另一端通过光滑定滑轮与物体乙相连,甲、乙两物体质量相等。系统平衡时,O点两侧绳与竖直方向的夹角分别为α和β。若α=70°,则β等于(
)
A.45° B.55° C.65° D.70°“定杆”和“动杆”动杆:
若轻杆用光滑的转轴或铰链连接,当杆平衡时,杆所受到的弹力方向一定沿着杆,否则杆会转动.如图乙所示定杆:
若轻杆被固定,不发生转动,则杆受到的弹力方向不一定沿杆的方向,如图甲所示“定杆”和“动杆”如图甲所示,轻绳AD跨过固定在水平横梁BC右端的光滑定滑轮挂住一个质量为m1的物体,∠ACB=30°;图乙所示的轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向成30°角,轻杆的G点用细绳GF拉住一个质量为m2的物体,重力加速度为g,则下列说法正确的是(
)A.图甲中BC对滑轮的作用力为m1g/2B.图乙中HG杆受到绳的作用力为m2gC.细绳AC段的拉力FAC与细绳EG段的拉力FEG之比为1∶1D.细绳AC段的拉力FAC与细绳EG段的拉力FEG之比为m1∶2m2临界极值问题临界问题
当某物理量变化时,会引起其他物理量的变化,从而使物体所处的平衡状态能够“恰好出现”或“恰好不出现”.在问题描述中常用“刚好”“刚能”“恰好”等语言叙述:(1)由静止到运动,摩擦力达到最大静摩擦力.(2)绳子恰好绷紧,拉力F=0.(3)刚好离开接触面,支持力FN=0.临界极值问题临界问题例1:如图所示,在水平推力作用下,物体A静止在倾角为θ=45°的粗糙斜面上,当水平推力为F0时,A刚好不下滑,然后增大水平推力的值,当水平推力为F时A刚好不上滑。设滑动摩擦力等于最大静摩擦力,物块A与斜面之间的动摩擦因数为μ(μ<1),则下列关系式成立的是(
)极限法、解析法临界极值问题临界问题例2:物体的质量为2kg,两根轻细绳AB和AC的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ角的拉力F,相关几何关系如图所示,θ=60°,若要使绳都能伸直,求出拉力F的大小范围.(g取10m/s2)名校学案P102/例2极限法、解析法临界极值问题极值问题
一般指在力的变化过程中的最大值和最小值问题例1:如图所示,质量m=5.2kg的金属块放在水平地面上,在斜向上的拉力F作用下,向右以v0=2.0m/s的速度做匀速直线运动.已知金属块与地面间的动摩擦因数μ=0.2,g=10m/s2.求所需拉力F的最小值.解析法临界极值问题极值问题如图所示,重力都为G的两个小球A和B用三段轻绳连接后悬挂在O点,O、B间的绳子长度是A、B间的绳子长度的2倍,将一个拉力F作用到小球B上,使三段轻绳都伸直且O、A间和A、B间的两段绳子分别处于竖直和水平方向上,则拉力F的最小值为?图解法临界极值问题方法总结(1)解析法:根据物体的平衡条件写出物理量之间的函数关系(或画出函数图像),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值);(2)图解法:若只受三个力,则这三个力构成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版货物买卖担保合同
- 管道疏通工程合同范例
- 甲醛公司合同范例
- 物流装卸员工合同范例
- 经济商业合同范例
- 房屋代理销售合同范例
- 2024年度电气自动化控制系统安装承包合同2篇
- 租房合同范例 带家具
- 粮油仓储外包合同模板
- 危险化学品运输事故应急处置预案(4篇)
- 2022农房设计和建设技术导则
- 发豆芽实验报告范文
- 苏教版四年级上册竖式计算400题及答案
- 2024年河南省研学旅行(高职) 技能大赛参考试题库(含答案)
- 商品学(慕课版)教案汇总-教学设计 1.1走近商品 -6.2品类管理
- 小学未成年保护应急预案
- 新能源汽车保险与理赔
- 消毒供应中心(CSSD)感染防控指引
- 下肢动脉闭塞症的护理
- 单位职工酒驾检讨书范文
- 中医治疗肾病的
评论
0/150
提交评论