版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届湖南株洲市第十八中学高三第二学期3月高考诊断性测试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有()A.69人 B.84人 C.108人 D.115人2.已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是()A. B. C. D.3.抛物线的准线方程是,则实数()A. B. C. D.4.在三棱锥中,,,,,点到底面的距离为2,则三棱锥外接球的表面积为()A. B. C. D.5.在中,点为中点,过点的直线与,所在直线分别交于点,,若,,则的最小值为()A. B.2 C.3 D.6.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或7.在中,角的对边分别为,,若,,且,则的面积为()A. B. C. D.8.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是()A. B. C. D.9.“”是“函数(为常数)为幂函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件10.设,,,则()A. B. C. D.11.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为()A. B. C. D.12.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为()A.3 B.2 C.1 D.0二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系xOy中,已知A0,a,B3,a+414.某种产品的质量指标值服从正态分布,且.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_________.15.已知双曲线的右准线与渐近线的交点在抛物线上,则实数的值为___________.16.若函数,其中且,则______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在多面体中,四边形是正方形,平面,,,为的中点.(1)求证:;(2)求平面与平面所成角的正弦值.18.(12分)在四棱锥的底面是菱形,底面,,分别是的中点,.(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点的位置;若不存在,说明理由.19.(12分)某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).(1)应抽查男生与女生各多少人?(2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:时间(小时)[0,1](1,2](2,3](3,4](4,5](5,6]频率0.050.200.300.250.150.05若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关”?男生女生总计每周平均体育锻炼时间不超过2小时每周平均体育锻炼时间超过2小时总计附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87920.(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.21.(12分)[选修4-5:不等式选讲]:已知函数.(1)当时,求不等式的解集;(2)设,,且的最小值为.若,求的最小值.22.(10分)在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)写出的极坐标方程与直线的直角坐标方程;(2)曲线上是否存在不同的两点,(以上两点坐标均为极坐标,,),使点、到的距离都为3?若存在,求的值;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
先求得名学生中,只能说出一种或一种也说不出的人数,由此利用比例,求得名学生中对四大发明只能说出一种或一种也说不出的人数.【详解】在这100名学生中,只能说出一种或一种也说不出的有人,设对四大发明只能说出一种或一种也说不出的有人,则,解得人.故选:D【点睛】本小题主要考查利用样本估计总体,属于基础题.2.A【解析】双曲线﹣=1的渐近线方程为y=x,不妨设过点F1与双曲线的一条渐过线平行的直线方程为y=(x﹣c),与y=﹣x联立,可得交点M(,﹣),∵点M在以线段F1F1为直径的圆外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.则e=>1.∴双曲线离心率的取值范围是(1,+∞).故选:A.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3.C【解析】
根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.4.C【解析】
首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积.【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,,,,,,为的中点由球的性质可知:平面,,且.设,,,,在中,,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为.故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.5.B【解析】
由,,三点共线,可得,转化,利用均值不等式,即得解.【详解】因为点为中点,所以,又因为,,所以.因为,,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1.故选:B【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.6.D【解析】
由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.7.C【解析】
由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.【详解】解:,,且,,化为:.,解得..故选:.【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.8.A【解析】
联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.【点睛】本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.9.A【解析】
根据幂函数定义,求得的值,结合充分条件与必要条件的概念即可判断.【详解】∵当函数为幂函数时,,解得或,∴“”是“函数为幂函数”的充分不必要条件.故选:A.【点睛】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.10.A【解析】
先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.11.D【解析】
由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积.【详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即=60°,由底面边长为3得,∴.正三棱锥外接球球心必在上,设球半径为,则由得,解得,∴.故选:D.【点睛】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.12.C【解析】
根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③.【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题.故选:.【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.(-53,【解析】
求出AB的长度,直线方程,结合△ABC的面积为5,转化为圆心到直线的距离进行求解即可.【详解】解:AB的斜率k=a+4-a3-0=4=3设△ABC的高为h,则∵△ABC的面积为5,∴S=12|AB|h=即h=2,直线AB的方程为y﹣a=43x,即4x﹣3y+3若圆x2+y2=9上有且仅有四个不同的点C,则圆心O到直线4x﹣3y+3a=0的距离d=|3a|则应该满足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案为:(-53,【点睛】本题主要考查直线与圆的位置关系的应用,求出直线方程和AB的长度,转化为圆心到直线的距离是解决本题的关键.14.【解析】
直接计算,可得结果.【详解】由题可知:则质量指标值位于区间之外的产品件数:故答案为:【点睛】本题考查正太分布中原则,审清题意,简单计算,属基础题.15.【解析】
求出双曲线的渐近线方程,右准线方程,得到交点坐标代入抛物线方程求解即可.【详解】解:双曲线的右准线,渐近线,双曲线的右准线与渐近线的交点,交点在抛物线上,可得:,解得.故答案为.【点睛】本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题.16.【解析】
先化简函数的解析式,在求出,从而求得的值.【详解】由题意,函数可化简为,所以,所以.故答案为:0.【点睛】本题主要考查了二项式定理的应用,以及导数的运算和函数值的求解,其中解答中正确化简函数的解析式,准确求解导数是解答的关键,着重考查了推理与运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)【解析】
(1)首先证明,,,∴平面.即可得到平面,.(2)以为坐标原点,,,所在的直线分别为轴、轴、轴建立空间直角坐标系,分别求出平面和平面的法向量,带入公式求解即可.【详解】(1)∵平面,平面,∴.又∵四边形是正方形,∴.∵,∴平面.∵平面,∴.又∵,为的中点,∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以为坐标原点,,,所在的直线分别为轴、轴、轴建立空间直角坐标系.如图所示:则,,,.∴,,.设为平面的法向量,则,得,令,则.由题意知为平面的一个法向量,∴,∴平面与平面所成角的正弦值为.【点睛】本题第一问考查线线垂直,先证线面垂直时解题关键,第二问考查二面角,建立空间直角坐标系是解题关键,属于中档题.18.(Ⅰ)见解析;(Ⅱ);(Ⅲ)见解析.【解析】
(Ⅰ)由题意结合几何关系可证得平面,据此证明题中的结论即可;(Ⅱ)建立空间直角坐标系,求得直线的方向向量与平面的一个法向量,然后求解线面角的正弦值即可;(Ⅲ)假设满足题意的点存在,设,由直线与的方向向量得到关于的方程,解方程即可确定点F的位置.【详解】(Ⅰ)由菱形的性质可得:,结合三角形中位线的性质可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由题意结合菱形的性质易知,,,以点O为坐标原点,建立如图所示的空间直角坐标系,则:,设平面的一个法向量为,则:,据此可得平面的一个法向量为,而,设直线与平面所成角为,则.(Ⅲ)由题意可得:,假设满足题意的点存在,设,,据此可得:,即:,从而点F的坐标为,据此可得:,,结合题意有:,解得:.故点F为中点时满足题意.【点睛】本题主要考查线面垂直的判定定理与性质定理,线面角的向量求法,立体几何中的探索性问题等知识,意在考查学生的转化能力和计算求解能力.19.(1)男生人数为人,女生人数55人.(2)列联表答案见解析,有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关.【解析】
(1)求出男女比例,按比例分配即可;(2)根据题意结合频率分布表,先求出二联表中数值,再结合公式计算,利用表格数据对比判断即可【详解】(1)因为男生人数:女生人数=900:1100=9:11,所以男生人数为,女生人数100﹣45=55人,(2)由频率频率直方图可知学生每周平均体育锻炼时间超过2小时的人数为:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均体育锻炼时间超过2小时的女生人数为37人,联表如下:男生女生总计每周平均体育锻炼时间不超过2小时71825每周平均体育锻炼时间超过2小时383775总计4555100因为3.892>3.841,所以有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关.【点睛】本题考查分层抽样,独立性检验,熟记公式,正确计算是关键,属于中档题.20.【解析】
根据,可解得,设为曲线任一点,在矩阵对应的变换作用下得到点,则点在曲线上,根据变换的定义写出相应的矩阵等式,再用表示出,代入曲线的方程中,即得.【详解】,,即.,解得,.设为曲线任一点,则,又设在矩阵A变换作用得到点,则,即,所以即代入,得,所以曲线的方程为.【点睛】本题考查逆矩阵,矩阵与变换
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44709-2024旅游景区雷电灾害防御技术规范
- 铝业加工厂二零二四年租赁合同
- 三峡课文的知识课件
- 轮胎企业市场营销策划与实施合同(二零二四年度)
- 全新集体合同模板
- 2024版艺术品交易居间协议3篇
- 2024年度原材料采购长期供货协议3篇
- 介绍英国汽车课件
- 化工原理实验下:吸收实验511
- 人教版九年级化学第一单元复习课件
- 偏瘫的早期康复治疗
- 北京车牌租赁合同格式
- 物流发展前景分析
- 职业病基础知识培训
- 《中国的饭局文化》课件
- 2024-2030年中国聚醚醚酮树脂行业前景动态及发展方向预测报告
- 2024-2025学年译林版七年级英语上学期期中复习试卷(南京卷)含解析
- 走近大诗人学习通超星期末考试答案章节答案2024年
- 标志设计 课件 2024-2025学年人教版(2024)初中美术七年级上册
- 工程结算资料清单
- 部编版(2024)一年级道德与法治上册第15课《我们不乱扔》教学设计
评论
0/150
提交评论