三年级(下)第13讲简单抽屉原理_第1页
三年级(下)第13讲简单抽屉原理_第2页
三年级(下)第13讲简单抽屉原理_第3页
三年级(下)第13讲简单抽屉原理_第4页
三年级(下)第13讲简单抽屉原理_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十三讲第十三讲简单抽屉原理把10个苹果放进9个抽屉中,无论怎么放,一定能找到一个抽屉,里面至少有2个苹果.这个看上去很显然的现象,在数学中我们把它称作抽屉原理.一般地,我们有如下结论:抽屉原理I把一些苹果随意放入若干个抽屉,如果苹果个数多于抽屉个数,那么一定能找到一个抽屉,里面至少有2个苹果.以9个抽屉为例:把9个苹果放进9个抽屉,这时苹果个数不多于抽屉个数,如果苹果平均放进抽屉中,则每个抽屉都只放了1个苹果.但如果把10个苹果放进9个抽屉,这时苹果个数多于抽屉个数,一定能找到一个抽屉,里面至少有2个苹果.因为即使每个抽屉都放1个苹果时,也只能放进个苹果,剩下的1个苹果再放进任何一个抽屉,都会使该抽屉中有2个苹果.类似的,把99个苹果放进9个抽屉,苹果个数多于抽屉个数,一定能找到一个抽屉,里面至少有2个苹果.事实上,我们还可以发现:如果这99个苹果平均放进9个抽屉中,每个抽屉里放个苹果,如果放得不平均,则肯定有某个抽屉里的苹果多于11个.但如果把100个苹果放进9个抽屉,即使每个抽屉都放11个苹果,只能放99个苹果,剩下1个苹果再放进抽屉中,一定会使得某个抽屉至少有12个苹果.我们把“抽屉原理I”加以推广,就可以得到一个更全面的抽屉原理.抽屉原理II把m个苹果放入n个抽屉(m大于n),结果有两种可能:(1)如果没有余数,那么就一定有抽屉至少放了“”个苹果;(2)如果有余数,那么就一定有抽屉至少放了“的商再加1”个苹果.抽屉原理也称“鸽巢原理”或“狄利克莱原理”,是19世纪德国数学家狄利克莱最早提出的,在组合数学中有着非常重要的地位.如果把96个苹果放入8个抽屉,那么一定有抽屉至少放了________个苹果.如果把96个苹果放入8个抽屉,那么一定有抽屉至少放了________个苹果.如果把97片培根放在8个盘子,那么一定有盘子至少放了________片培根.如果把98只羊放在8个笼子里,那么一定有笼子至少放了________只羊.练一练回想刚才得出抽屉原理的过程,在计算时我们都使用了平均分配的思想.为什么要平均分呢?因为只有这样做才能使得放入同一个抽屉的苹果尽量少,求出的结果才是至少几个.虽然我们算的是分到同一个抽屉的苹果,但考虑的时候却是让同一抽屉中的苹果尽量少——这种从反面考虑的分析方法又叫做“最不利原则”,即考虑最坏的情形.这一原则不仅体现在抽屉原理中,它还在解决很多与“至多”、“至少”相关的问题时非常有用.一个鱼缸里有4个品种的鱼,每种鱼都有很多条.至少要捞出多少条鱼,才能保证其中有一个鱼缸里有4个品种的鱼,每种鱼都有很多条.至少要捞出多少条鱼,才能保证其中有5条相同品种的鱼?例题1分析:如果没有满足“有5条相同品种的鱼”的要求,最“倒霉”的情况是什么?换句话说,当结论不成立时,最多可能有多少条鱼?只要比这个“最多的”还要多,结论就肯定成立了.练习1练习1一个布袋里有7种不同颜色的彩球,每种颜色的彩球都有很多,那么至少要拿出多少个彩球,才能保证其中有6个相同颜色的彩球?一个布袋里有大小相同颜色不同的一些木球,其中红色的有一个布袋里有大小相同颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个.现在闭着眼睛从中摸球,请问:

(1)至少要取出多少个球,才能保证取出的球至少有三种颜色?

(2)至少要取出多少个球,才能保证其中必有红球和黄球?例题2分析:仍旧考虑问题的反面,当本题中的结论不成立时,最多能取出多少个球?练习2练习2爷爷给小明买了一盒糖,这些糖分为苹果味、桔子味和菠萝味三种口味,每种口味各30颗.小明特别喜欢吃苹果味的,他闭着眼睛,至少需要摸出多少颗糖,才能保证一定能拿到1颗苹果味的?至少需要摸出多少颗糖,才能保证能拿到两种口味的糖?将1只白袜子将1只白袜子、2只黑袜子、3只红袜子、8只黄袜子和9只绿袜子放入一个布袋里.请问:

(1)一次至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子?

(2)一次至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子?(两只袜子颜色相同即为一双)例题3分析:结论的反面是什么?在不满足结论的情况下,最多能摸出多少只袜子?练习3练习3袋子里白袜子、黑袜子、红袜子各10只.现在闭着眼睛从袋子中摸袜子,请问:

(1)至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子?

(2)至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子?

(两只袜子颜色相同即为一双)一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张.现在要从中随意取出一些牌,如果要保证在取出来的牌中至少包含三种花色,并且这三种花色的牌至少都有3张,那么最少要取出多少张牌?一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张.现在要从中随意取出一些牌,如果要保证在取出来的牌中至少包含三种花色,并且这三种花色的牌至少都有3张,那么最少要取出多少张牌?例题4分析:本题中我们要保证“至少包含三种花色”和“这三种花色的牌至少都有3张”这两个条件,如果不能同时保证这两个条件,那么最多可能取出多少张牌?练习4练习4口袋中装有4种不同颜色的珠子,每种都是100个.要想保证从袋中摸出3种不同颜色的珠子,并且每种至少10个,那么至少要摸出多少个珠子?大头把一副围棋子混装在一个盒子中(围棋子有黑、白两种颜色),然后每次从盒子中摸出4枚棋子,那么他至少要闭着眼睛摸几次,才能保证其中有三次摸出棋子的颜色情况是相同的?(不必考虑每次摸出的4枚棋子的顺序)大头把一副围棋子混装在一个盒子中(围棋子有黑、白两种颜色),然后每次从盒子中摸出4枚棋子,那么他至少要闭着眼睛摸几次,才能保证其中有三次摸出棋子的颜色情况是相同的?(不必考虑每次摸出的4枚棋子的顺序)例题5分析:摸出的4枚棋子的颜色情况都有哪几种?如果结论不成立,最多可能摸了几次?鸽巢原理鸽巢原理鸽巢原理又名抽屉原理或狄利克雷原理,它由德国数学家狄利克雷(Divichlet,1805—1855)首先发现.鸽巢原理在组合学中占据着非常重要的地位,它常被用来证明一些关于存在性的数学问题,并且在数论和密码学中也有着广泛的应用.使用鸽巢原理解题的关键是巧妙构造鸽巢或抽屉,即如何找出合乎问题条件的分类原则.鸽巢原理的应用在几何图形中:

例:在边长为2的等边三角形内任意选择5个点,存在2个点,其间距离至多为1.分析:由题意,可以构造出4个抽屉,每个抽屉满足在其中的距离至多为1.根据抽屉原理,在4个抽屉里分别放置4个点,不论第5个点如何放置,都满足两点之间的距离最多为1.小故事国王让阿凡提在国王让阿凡提在的国际象棋棋盘的每个格子里放米粒.结果每个格子里至少放一粒米,无论怎么放都至少有3个格子里的米粒一样多,那么至多有多少个米粒?例题6分析:至少有3个格子里的米粒一样多的反面是最多只有2个格子的米粒数一样多,想想这时格子里至少有多少个米粒?课堂内外课堂内外《晏子春秋》里有一个“二桃杀三士”的故事.齐景公养着三名勇士,他们名叫田开疆、公孙接和古冶子.这三名勇士都力大无比,武功超群,为齐景公立下过不少功劳.但他们也刚愎自用,目中无人,得罪了齐国的宰相晏婴.晏子便劝齐景公杀掉他们,并献上一计:以齐景公的名义赏赐三名勇士两个桃子,让他们自己评功,按功劳的大小吃桃.三名勇士都认为自己的功劳很大,应该单独吃一个桃子.于是公孙接讲了自己的打虎功,拿了一只桃;田开疆讲了自己的杀敌功,拿起了另一桃.两人正准备要吃桃子,古冶子说出了自己更大的功劳.公孙接、田开疆都觉得自己的功劳确实不如古冶子大,感到羞愧难当,赶忙让出桃子.并且觉得自己功劳不如人家,却抢着要吃桃子,实在丢人,是好汉就没有脸再活下去,于是都拔剑自刎了.古冶子见了,后悔不迭.仰天长叹道:“如果放弃桃子而隐瞒功劳,则有失勇士尊严;为了维护自己而羞辱同伴,又有损哥们义气.如今两个伙伴都为此而死了,我独自活着,算什么勇士!”说罢,也拔剑自杀了.晏子采用借“桃”杀人的办法,不费吹灰之力,便达到了他预定的目的,可说是善于运用权谋.汉朝的一位无名氏在一首诗中曾不无讽刺的写道:“……一朝被谗言,二桃杀三士.谁能为此谋,相国务晏子!”值得指出的是,在晏子的权谋之中,包含了一个重要的数学原理──抽屉原理.在“二桃杀三士”的故事中,把两个桃子看作两个抽屉,把三名勇士放进去,至少有两名勇士在同一个抽屉里,即有两人必须合吃一个桃子.如果勇士们宁死也不肯忍受同吃一个桃子的羞耻,那么悲剧的结局就无法避免.二桃杀三士作业口袋里装有红、黄、蓝、绿4种颜色的球各5个.小华闭着眼睛从口袋里往外摸球,每次摸出1个球.他至少要摸出多少个球,才能保证摸出的球中每种颜色的球都有?小钱的存钱罐中有4种硬币:1分、2分、5分、1角,这四种硬币分别有5个、10个、15个、20个.小钱闭着眼睛向外摸硬币,他至少摸出多少个硬币,才能保证摸出的硬币中至少有两种不同的面值?至少摸出多少个硬币,才能保证摸出的硬币中既有5分硬币也有1角硬币?如果筷子颜色有黑色、白色、黄色、红色、蓝色五种,每种各有10根.在黑暗中取出一些筷子,为了搭配出两双颜色相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论