湖南省长沙市高三九月学情调研考试数学模拟试卷_第1页
湖南省长沙市高三九月学情调研考试数学模拟试卷_第2页
湖南省长沙市高三九月学情调研考试数学模拟试卷_第3页
湖南省长沙市高三九月学情调研考试数学模拟试卷_第4页
湖南省长沙市高三九月学情调研考试数学模拟试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市2025届高三九月学情调研考试数学模拟试卷本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合,则(

)A. B. C. D.2.若,,则的值是(

)A.0.9 B.1.08 C.2 D.43.已知非零向量满足,且,则与的夹角为(

)A. B. C. D.4.已知等差数列的前项和为,满足,则(

)A.200 B.100 C.200 D.1005.若,,则的值为(

)A. B. C. D.6.有4名男生、3名女生和2个不同的道具(记作A和B)参与一个活动,活动要求:所有人(男生和女生)必须站成一排,女生必须站在一起,并且她们之间按照身高从左到右由高到低的顺序排列(假设女生的身高各不相同);两个道具A和B必须被分配给队伍中的两个人(可以是男生,也可以是女生),但这两人不能站在一起.满足上述所有条件的排列方式共有(

)A.2400种 B.3600种 C.2880种 D.4220种7.用一个边长为4的正方形纸片,做一个如图所示的几何体,图中两个圆锥等底、等高,则该几何体体积的最大值为(

)A. B. C. D.8.设抛物线的焦点为F,直线l与C交于A,B两点,,,则l的斜率是(

)A.±1 B. C. D.±2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.已知复数在复平面内所对应的点分别为,且点均在以坐标原点为圆心.2为半径的圆上,点在第四象限,则(

)A.点在第一象限 B.C. D.10.甲罐中有5个红球,5个白球,乙罐中有3个红球,7个白球.先从甲罐中随机取出一球放入乙罐,再从乙罐中随机取出一球.表示事件“从甲罐取出的球是红球”,表示事件“从甲罐取出的球是白球”,B表示事件“从乙罐取出的球是红球”.则下列结论正确的是(

)A.、为对立事件 B.C. D.11.如图所示,在边长为3的等边三角形ABC中,,且点P在以AD中点O为圆心,OA为半径的半圆上,,则下列说法正确的是(

)A. B.C. D.的最大值为三、填空题:本题共3小题,每小题5分,共15分.12.展开式的中间一项的系数为.13.唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为,酒杯的容积,则其内壁表面积为.

14.已知椭圆的左、右焦点分别为,,以线段为直径的圆与C在第一、第三象限分别交于点A,B,若,则C的离心率的最大值是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.中国数学奥林匹克()竞赛由中国数学会主办,是全国中学生级别最高、规模最大、最具影响力的数学竞赛.某中学为了选拔参赛队员,组织了校内选拔赛.比赛分为预赛和决赛,预赛成绩合格者可进入决赛.(1)根据预赛成绩统计,学生预赛的成绩,成绩超过85分的学生可进入决赛.若共有600名学生参加了预赛,试估计进入决赛的人数(结果取整数);(2)决赛试题共设置了10个题目,其中单选题6题,每题10分,每题有1个正确选项,答对的10分,答错得0分;多选题4题,每题15分,每题有多个正确选项,全部选对得15分,部分选对得5分,有选错得0分.假设甲同学进入了决赛,且在决赛中,每个单选题答对的概率均为;每个多选题得15分、5分、0分的概率均分别为.求甲同学决赛成绩的数学期望.附:若,则,16.已知等差数列满足,.(1)求的通项公式;(2)若,求数列的前项和.17.在直三棱柱中,,,,G是的重心,点Q在线段AB(不包括两个端点)上.

(1)若Q为的中点,证明:平面;(2)若直线与平面所成的角正弦值为,求.18.动点到直线与直线的距离之积等于,且.记点M的轨迹方程为.(1)求的方程;(2)过上的点P作圆的切线PT,T为切点,求的最小值;(3)已知点,直线交于点A,B,上是否存在点C满足?若存在,求出点C的坐标;若不存在,说明理由.19.已知函数,若

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论