版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南京市江宁区高二上数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列{an}的前n项和为Sn,满足a1=1,-=1,则an=()A.2n-1 B.nC.2n-1 D.2n-12.已知点是椭圆上的任意点,是椭圆的左焦点,是的中点,则的周长为()A. B.C. D.3.瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点,其欧拉线方程为,则顶点C的坐标是()A.() B.()C.() D.()4.已知圆过点,,且圆心在轴上,则圆的方程是()A. B.C. D.5.设、分别是椭圆()的左、右焦点,过的直线l与椭圆E相交于A、B两点,且,则的长为()A. B.1C. D.6.已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A. B.C. D.7.已知等差数列,,则公差d等于()A. B.C.3 D.-38.2019年湖南等8省公布了高考改革综合方案将采取“”模式即语文、数学、英语必考,考生首先在物理、历史中选择1门,然后在思想政治、地理、化学、生物中选择2门,一名同学随机选择3门功课,则该同学选到历史、地理两门功课的概率为()A. B.C. D.9.已知△的顶点B,C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△的周长是()A. B.C.8 D.1610.圆的圆心为()A. B.C. D.11.如图,在四面体中,,,,分别为,,,的中点,则化简的结果为()A. B.C. D.12.命题:“,”的否定形式为()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.14.设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称与在上是“关联函数”.若与在上是“关联函数”,则实数的取值范围是____________.15.已知正数满足,则的最小值是__________.16.如图,图形中的圆是正方形的内切圆,点E,F,G,H为对角线与圆的交点,若向正方形内随机投入一点,则该点落在阴影部分区域内的概率为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,,,为的中点.(1)求证:平面;(2)若点在棱上,且,求点到平面的距离.18.(12分)已知为坐标原点,圆的圆心在轴上,点、均在圆上.(1)求圆的标准方程;(2)若直线与椭圆交于两个不同的点、,点在圆上,求面积的最大值.19.(12分)在锐角中,角的对边分别为,满足.(1)求;(2)若的面积为,求的值.20.(12分)已知椭圆的焦距为,左、右焦点分别为,为椭圆上一点,且轴,,为垂足,为坐标原点,且(1)求椭圆的标准方程;(2)过椭圆的右焦点的直线(斜率不为)与椭圆交于两点,为轴正半轴上一点,且,求点的坐标21.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,,,△ABC的面积为(1)求a;(2)若D为BC边上一点,且∠BAD=,求∠ADC的正弦值22.(10分)求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点;(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题可得,利用与的关系即求.【详解】∵a1=1,-=1,∴是以1为首项,以1为公差的等差数列,∴,即,∴当时,,当时,也适合上式,所以故选:A.2、A【解析】设椭圆另一个焦点为,连接,利用中位线的性质结合椭圆的定义可求得结果.【详解】在椭圆中,,,,如图,设椭圆的另一个焦点为,连接,因为、分别为、的中点,则,则的周长为,故选:A.3、A【解析】根据题意,求得的外心,再根据外心的性质,以及重心的坐标,联立方程组,即可求得结果.【详解】因为,故的斜率,又的中点坐标为,故的垂直平分线的方程为,即,故△的外心坐标即为与的交点,即,不妨设点,则,即;又△的重心的坐标为,其满足,即,也即,将其代入,可得,,解得或,对应或,即或,因为与点重合,故舍去.故点的坐标为.故选:A.4、B【解析】根据圆心在轴上,设出圆的方程,把点,的坐标代入圆的方程即可求出答案.【详解】因为圆的圆心在轴上,所以设圆的方程为,因为点,在圆上,所以,解得,所以圆的方程是.故选:B.5、C【解析】由椭圆的定义得:,,结合条件可得,即可得答案.【详解】由椭圆的定义得:,,又,,所以,由椭圆知,所以.故选:C6、B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率为.故选B.【点睛】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置.7、B【解析】根据题意,利用公式,即可求解.【详解】由题意,等差数列,,可得等差数列的公差.故选:B.8、A【解析】先由列举法计算出基本事件的总数,然后再求出该同学选到历史、地理两门功课的基本事件的个数,基本事件个数比即为所求概率.【详解】由题意,记物理、历史分别为、,从中选择1门;记思想政治、地理、化学、生物为、、、,从中选择2门;则该同学随机选择3门功课,所包含的基本事件有:,,,,,,,,,,,,共个基本事件;该同学选到历史、地理两门功课所包含的基本事件有:,,共个基本事件;该同学选到物理、地理两门功课的概率为.故选:A.【点睛】本题考查求古典概型的概率,属于基础题型.9、D【解析】根据椭圆定义求解【详解】由椭圆定义得△的周长是,故选:D.10、D【解析】由圆的标准方程求解.【详解】圆的圆心为,故选:D11、C【解析】根据向量的加法和数乘的几何意义,即可得到答案;【详解】故选:C12、D【解析】根据含一个量词的命题的否定方法直接得到结果.【详解】因为全称命题的否定是特称命题,所以命题:“,”的否定形式为:,,故选:D.【点睛】本题考查全称命题的否定,难度容易.含一个量词的命题的否定方法:修改量词,否定结论.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】写出,,求出,根据以及即可求解,【详解】由题意,,,所以,,因为,则,即,即,所以,即,解得或(舍).故答案为:14、【解析】令得,设函数,则直线与函数在区间上的图象有两个交点,利用导数分析函数的单调性与极值,利用数形结合思想可求得实数的取值范围.【详解】令得,设函数,则直线与函数在区间上的图象有两个交点,,令,可得,列表如下:极小值,,如图所示:由图可知,当时,直线与函数在区间上的图象有两个交点,因此,实数的取值范围是.故答案为:.15、8【解析】利用“1”代换,结合基本不等式求解.【详解】因为,,所以,当且仅当,即时等号成立,所以当时,取得最小值8.故答案为:8.16、【解析】利用几何概型概率计算公式,计算得所求概率.【详解】设正方形的边长为2,则阴影部分的面积为,故若向正方形内随机投入一点,则该点落在阴影部分区域内概率为故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)易得,再由勾股定理逆定理证明,即可得线面垂直;(2)根据(1)得,进而根据几何关系,利用等体积法求解即可.【详解】解:(1)连接,∵,是中点,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵点在棱上,且,,为的中点.∴,∴由余弦定理得,即,∴,由(1)平面,设点到平面的距离为∴,即,解得:所以点到平面的距离为.18、(1);(2).【解析】(1)求出圆心坐标,可求得圆的半径,进而可得出圆的标准方程;(2)求得点到直线的距离,将直线的方程与椭圆的方程联立,求得的表达式,利用三角形的面积公式结合基本不等式可求得结果.【小问1详解】解:由题知,线段的中点为,直线的斜率,所以线段的中垂线为,即为,所以圆的圆心为轴与的交点,所以圆的半径,所以圆的标准方程为.【小问2详解】解:由题知:圆心到直线的距离,因为,所以圆心到直线的距离,所以到直线的距离,设点、,联立可得,,,则,所以,,所以,所以,所以当且仅当,即时等号成立,所以当时,取得最大值.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值19、(1);(2).【解析】(1)由条件可得,即,从而可得答案.(2)由条件结合三角形的面积公式可得,再由余弦定理得,配方可得答案.【详解】(1)因为,所以,所以所以,因为所以,因为,所以(2)由面积公式得,于是,由余弦定理得,即,整理得,故.20、(1)(2)【解析】(1)利用△∽△构造齐次方程,求出离心率,再利用焦距即可求出椭圆方程;(2)将直线方程与椭圆方程联立利用韦达定理求出和,利用几何关系可知,即可得,将韦达定理代入化简即可求得点坐标.【小问1详解】∵椭圆的焦距为,∴,即,轴,∴,则,由,,则△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,则椭圆的标准方程为,【小问2详解】设直线的方程为,且,将直线方程与椭圆方程联立得,,则,,∵,∴,∴,∴,∴,即.21、(1)(2)【解析】(1)利用面积公式及余弦定理可求解;(2)由正弦定理得到,再运用同角函数的关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【《借助现代化网络技术优化小学英语课堂教学探究》3400字】
- 【《初中历史人物教学探究》14000字(论文)】
- 2024年学校安全工作总结参考(四篇)
- 2024年学困生帮扶工作计划例文(三篇)
- 2024年司机岗位职责模版(五篇)
- 2024年大学秘书部工作计划(四篇)
- 2024年商品混凝土运输合同(三篇)
- 2024年学前班班主任的工作计划样本(三篇)
- 2024年小学跳绳兴趣小组活动计划(二篇)
- 2024年小班班级工作总结(三篇)
- 新视野大学英语视听说教程ppt课件
- 攻城掠地数据以及sdata文件修改教程
- 医疗废物转运箱消毒记录表
- 最新投标书密封条
- 看守所岗位职责
- 2019年青年英才培养计划项目申报表
- Sentaurus在ESD防护器件设计中的应用PPT课件
- 《抛物线焦点弦的性质探究》学案
- 人教版小学二年级数学上册全册教案【表格式】
- 佛山岭南新天地项目概况.
- 喷码机操作手册
评论
0/150
提交评论