版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省榆树市榆树一中高二上数学期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线,其渐近线方程为,则a的值为()A. B.C. D.22.在各项均为正数等比数列中,若成等差数列,则=()A. B.C. D.3.函数,则的值为()A. B.C. D.4.中共一大会址、江西井冈山、贵州遵义、陕西延安是中学生的几个重要的研学旅行地.某中学在校学生人,学校团委为了了解本校学生到上述红色基地研学旅行的情况,随机调查了名学生,其中到过中共一大会址或井冈山研学旅行的共有人,到过井冈山研学旅行的人,到过中共一大会址并且到过井冈山研学旅行的恰有人,根据这项调查,估计该学校到过中共一大会址研学旅行的学生大约有()人A. B.C. D.5.已知,数列,,,与,,,,都是等差数列,则的值是()A. B.C. D.6.已知集合A=()A. B.C.或 D.7.已知,则下列说法中一定正确的是()A. B.C. D.8.设等差数列的前n项和为,且,则()A.64 B.72C.80 D.1449.如图,某绿色蔬菜种植基地在A处,要把此处生产的蔬菜沿道路或运送到形状为四边形区域的农贸市场中去,现要求在农贸市场中确定一条界线,使位于界线一侧的点沿道路运送蔬菜较近,而另一侧的点沿道路运送蔬菜较近,则该界线所在曲线为()A.圆 B.椭圆C.双曲线 D.抛物线10.下列语句中是命题的是A.周期函数的和是周期函数吗? B.C. D.梯形是不是平面图形呢?11.函数在上的最小值为()A. B.4C. D.12.已知等比数列满足,则q=()A.1 B.-1C.3 D.-3二、填空题:本题共4小题,每小题5分,共20分。13.不等式的解集是________.14.已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________15.点P是棱长为1的正方体ABCD﹣A1B1C1D1的底面A1B1C1D1上一点,则的取值范围是__.16.已知双曲线的焦点,过F且斜率为1的直线与双曲线有且只有一个交点,则双曲线的方程为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,点О是正四棱锥的底面中心,四边形PQDO矩形,(1)点B到平面APQ的距离:(2)设E为棱PC上的点,且,若直线DE与平面APQ所成角的正弦值为,试求实数的值18.(12分)已知△ABC的内角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△ABC面积的最大值.19.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点(其中A在B的上方),过线段AB的中点M且与x轴平行的直线依次交直线OA、OB,l于点P、Q、N(1)试探索PM与NQ长度的大小关系,并证明你的结论;(2)当P、Q是线段MN的三等分点时,求直线AB的斜率;(3)当P、Q不是线段MN的三等分点时,证明:以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP20.(12分)如图,在棱长为的正方体中,为中点(1)求二面角的大小;(2)探究线段上是否存在点,使得平面?若存在,确定点的位置;若不存在,说明理由21.(12分)在平面直角坐标系中,已知.(1)求直线的方程;(2)平面内的动点满足,到点与点距离的平方和为24,求动点的轨迹方程.22.(10分)已知椭圆C:(a>b>0)的离心率e为,点在椭圆上(1)求椭圆C的方程;(2)若A、B为椭圆的左右顶点,过点(1,0)的直线交椭圆于M、N两点,设直线AM、BN的斜率分别为,求证为定值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由双曲线方程,根据其渐近线方程有,求参数值即可.【详解】由渐近线,结合双曲线方程,∴,可得.故选:A.2、A【解析】利用等差中项的定义以及等比数列的通项公式即可求解.【详解】设等比数列的公比为,∵成等差数列,∴,即,解得或(舍去),∴,故选:.3、B【解析】求出函数的导数,代入求值即可.【详解】函数,故,所以,故选:B4、B【解析】作出韦恩图,设调查的学生中去过中共一大会址研学旅行的学生人数为,根据题意求出的值,由此可得出该学校到过中共一大会址研学旅行的学生人数.【详解】如下图所示,设调查的学生中去过中共一大会址研学旅行的学生人数为,由题意可得,解的,因此,该学校到过中共一大会址研学旅行的学生的人数为.故选:B.【点睛】本题考查韦恩图的应用,同时也考查了利用分层抽样求样本容量,考查计算能力,属于基础题.5、A【解析】根据等差数列的通项公式,分别表示出,,整理即可得答案.【详解】数列,,,和,,,,各自都成等差数列,,,,故选:A6、A【解析】先求出集合,再根据集合的交集运算,即可求出结果.【详解】因为集合,所以.故选:A.7、B【解析】AD选项,举出反例即可;BC选项,利用不等式的基本性质进行判断.【详解】当,时,满足,此时,故A错误;因,所以,,,B正确;因为,所以,,故,C错误;当,时,满足,,,所以,D错误.故选:B8、B【解析】利用等差数列下标和性质,求得,再用等差数列前项和公式即可求解.【详解】根据等差数列的下标和性质,,解得,.故选:B.9、C【解析】设是界限上的一点,则,即,再根据双曲线的定义即可得出答案.【详解】解:设是界限上的一点,则,所以,即,在中,,所以点的轨迹为双曲线,即该界线所在曲线为双曲线.故选:C.10、B【解析】命题是能判断真假的语句,疑问句不是命题,易知为命题,故选B11、D【解析】求出导数,由导数确定函数在上的单调性与极值,可得最小值【详解】,所以时,,递减,时,,递增,所以是在上的唯一极值点,极小值也是最小值.故选:D12、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集【详解】不等式得,故,故答案为:.14、【解析】根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.【详解】因为为上关于坐标原点对称的两点,且,所以四边形为矩形,设,则,所以,,即四边形面积等于.故答案为:.15、[﹣,0]【解析】建立空间直角坐标系,设出点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1,计算•x2﹣x,利用二次函数的性质求得它的值域即可【详解】解:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系,如图所示;则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),由题意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴•x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函数的性质可得,当x=y时,•取得最小值为;当x=0或1,且y=0或1时,•取得最大值为0,则•的取值范围是[,0]故答案为:[,0]【点睛】本题主要考查了向量在几何中的应用与向量的数量积运算问题,是综合性题目16、【解析】根据直线与双曲线只有一个交点可知直线与双曲线平行,由渐近线斜率可列出的齐次方程,利用齐次方程求解.【详解】直线与双曲线有且只有一个交点,且焦点,直线与双曲线渐近线平行,,即,,即,.则双曲线的方程为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)以三棱锥等体积法求点到面距离,思路简单快捷.(2)由直线DE与平面APQ所成角的正弦值为,可以列关于的方程,解之即可.【小问1详解】点О是正四棱锥底面中心,点О是BD的中点,四边形PQDO矩形,,两点到平面APQ的距离相等.正四棱锥中,平面,平面,,,设点B到平面APQ的距离为d,则,即解之得,即点B到平面APQ的距离为【小问2详解】取PC中点N,连接BN、ON、DN,则.平面平面正四棱锥中,,直线平面平面,平面平面,平面平面平面中,点E到直线ON的距离即为点E到平面的距离.中,,点P到直线ON的距离为△中,,设点E到平面的距离为d,则有,则则有,整理得,解之得或18、(1)(2)【解析】(1)对,利用正弦定理和诱导公式整理化简得到,即可求出;(2)先由正弦定理求出c,再由余弦定理和基本不等式求出ab的最大值为1,代入面积公式求面积.【小问1详解】对于.由正弦定理知:即.所以.所以.所以因为,,所以.所以.因为,所以.【小问2详解】因为,由正弦定理知:.由余弦定理知:,所以.当且仅当时,等号成立,所以ab的最大值为1.所以,即面积的最大值为.19、(1),证明见解析(2)(3)证明见解析【解析】(1)根据已知条件设出直线方程及,与抛物线的方程联立,利用韦达定理和中点坐标公式,三点共线的性质即可求解;(2)根据已知条件得出,运用韦达定理和弦长公式,可得出直线的斜率;(3)根据(1)的结论及求根公式,求得点的坐标,结合的表达式,结合图形可知,由的范围和的取值即可证明.【小问1详解】由题意可知,抛物线的焦点为,设直线的方程为,则,消去,得,,,所以直线的方程为,由因为三点共线,所以,,同理,,,所以,所以.【小问2详解】因为P、Q是线段MN的三等分点,所以,,,又,,所以,所以,解得或(舍)所以直线AB的斜率为.【小问3详解】由(1)知,,得,所以,,又,,,,当时,,由图可知,,而只要,就有,所以当P、Q不是线段MN的三等分点时,以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP20、(1)(2)点为线段上靠近点的三等分点【解析】(1)建立空间直角坐标系,分别写出点的坐标,求出两个平面的法向量代入公式求解即可;(2)假设存在,设,利用相等向量求出坐标,利用线面平行的向量法代入公式计算即可.【小问1详解】如下图所示,以为原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系,则,,,,,,.所以,设平面的法向量,所以,即,令,则,,所以,连接,因为,,,平面,平面,平面,所以平面,所以为平面的一个法向量,所以,由图知,二面角为锐二面角,所以二面角的大小为【小问2详解】假设在线段上存在点,使得平面,设,,,因为平面,所以,即所以,即解得所以在线段上存在点,使得平面,此时点为线段上靠近点的三等分点21、(1)(2)【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【《借助现代化网络技术优化小学英语课堂教学探究》3400字】
- 【《初中历史人物教学探究》14000字(论文)】
- 2024年学校安全工作总结参考(四篇)
- 2024年学困生帮扶工作计划例文(三篇)
- 2024年司机岗位职责模版(五篇)
- 2024年大学秘书部工作计划(四篇)
- 2024年商品混凝土运输合同(三篇)
- 2024年学前班班主任的工作计划样本(三篇)
- 2024年小学跳绳兴趣小组活动计划(二篇)
- 2024年小班班级工作总结(三篇)
- 新视野大学英语视听说教程ppt课件
- 攻城掠地数据以及sdata文件修改教程
- 医疗废物转运箱消毒记录表
- 最新投标书密封条
- 看守所岗位职责
- 2019年青年英才培养计划项目申报表
- Sentaurus在ESD防护器件设计中的应用PPT课件
- 《抛物线焦点弦的性质探究》学案
- 人教版小学二年级数学上册全册教案【表格式】
- 佛山岭南新天地项目概况.
- 喷码机操作手册
评论
0/150
提交评论