版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省云浮市郁南县连滩中学数学高三第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示的茎叶图为高三某班名学生的化学考试成绩,算法框图中输入的,,,,为茎叶图中的学生成绩,则输出的,分别是()A., B.,C., D.,2.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为A. B. C. D.3.已知函数是定义在上的偶函数,当时,,则,,的大小关系为()A. B. C. D.4.展开项中的常数项为A.1 B.11 C.-19 D.515.函数在上的大致图象是()A. B.C. D.6.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率A. B.C. D.7.在区间上随机取一个实数,使直线与圆相交的概率为()A. B. C. D.8.已知数列满足,则()A. B. C. D.9.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60 B.7月份的利润最大C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元10.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.20 B.27 C.54 D.6411.设数列的各项均为正数,前项和为,,且,则()A.128 B.65 C.64 D.6312.抛物线C:y2=2px的焦点F是双曲线C2:x2m-y21-m=1A.2+1 B.22+3 C.二、填空题:本题共4小题,每小题5分,共20分。13.不等式的解集为________14.已知函数,若,则___________.15.函数在的零点个数为________.16.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)18.(12分)若不等式在时恒成立,则的取值范围是__________.19.(12分)在中,内角的对边分别为,且(1)求;(2)若,且面积的最大值为,求周长的取值范围.20.(12分)已知数列和满足,,,,.(Ⅰ)求与;(Ⅱ)记数列的前项和为,且,若对,恒成立,求正整数的值.21.(12分)已知函数,.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)求函数在上的最小值;(Ⅲ)若函数,当时,的最大值为,求证:.22.(10分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称.连接.求证:存在实数,使得成立.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故,.考点:程序框图、茎叶图.2、C【解析】
将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为.故选C.3、C【解析】
根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【详解】依题意得,,当时,,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,,即,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.4、B【解析】
展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【详解】展开式中的项为常数项,有3种情况:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【点睛】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.5、D【解析】
讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.6、B【解析】
设,则,,因为,所以.若,则,所以,所以,不符合题意,所以,则,所以,所以,,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率.故选B.7、D【解析】
利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【点睛】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.8、C【解析】
利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.9、D【解析】
直接根据折线图依次判断每个选项得到答案.【详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.10、B【解析】
设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。11、D【解析】
根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.12、A【解析】
先由题和抛物线的性质求得点P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.【详解】由题意知,抛物线焦点F1,0,准线与x轴交点F'(-1,0),双曲线半焦距c=1,设点Q(-1,y)ΔFPQ是以点P为直角顶点的等腰直角三角形,即PF所以PQ⊥抛物线的准线,从而PF⊥x轴,所以P1,2∴2a=P即a=故双曲线的离心率为e=故选A【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
通过平方,将无理不等式化为有理不等式求解即可。【详解】由得,解得,所以解集是。【点睛】本题主要考查无理不等式的解法。14、【解析】
根据题意,利用函数奇偶性的定义判断函数的奇偶性,利用函数奇偶性的性质求解即可.【详解】因为函数,其定义域为,所以其定义域关于原点对称,又,所以函数为奇函数,因为,所以.故答案为:【点睛】本题考查函数奇偶性的判断及其性质;考查运算求解能力;熟练掌握函数奇偶性的判断方法是求解本题的关键;属于中档题、常考题型.15、【解析】
求出的范围,再由函数值为零,得到的取值可得零点个数.【详解】详解:由题可知,或解得,或故有3个零点.【点睛】本题主要考查三角函数的性质和函数的零点,属于基础题.16、0或6【解析】
计算得到圆心,半径,根据得到,利用圆心到直线的距离公式解得答案.【详解】,即,圆心,半径.,故圆心到直线的距离为,即,故或.故答案为:或.【点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)万;(Ⅱ)分布列见解析,;(Ⅲ)【解析】
(Ⅰ)根据比例关系直接计算得到答案.(Ⅱ)的可能取值为,计算概率得到分布列,再计算数学期望得到答案.(Ⅲ)英语测试成绩在70分以上的概率为,故,解得答案.【详解】(Ⅰ)样本中女生英语成绩在分以上的有人,故人数为:万人.(Ⅱ)8名男生中,测试成绩在70分以上的有人,的可能取值为:.,,.故分布列为:.(Ⅲ)英语测试成绩在70分以上的概率为,故,故.故的最小值为.【点睛】本题考查了样本估计总体,分布列,数学期望,意在考查学生的计算能力和综合应用能力.18、【解析】
原不等式等价于在恒成立,令,,求出在上的最小值后可得的取值范围.【详解】因为在时恒成立,故在恒成立.令,由可得.令,,则为上的增函数,故.故.故答案为:.【点睛】本题考查含参数的不等式的恒成立,对于此类问题,优先考虑参变分离,把恒成立问题转化为不含参数的新函数的最值问题,本题属于基础题.19、(1)(2)【解析】
(1)利用二倍角公式及三角形内角和定理,将化简为,求出的值,结合,求出A的值;(2)写出三角形的面积公式,由其最大值为求出.由余弦定理,结合,,求出的范围,注意.进而求出周长的范围.【详解】解:(1)整理得解得或(舍去)又;(2)由题意知,又,,又周长的取值范围是【点睛】本题考查了二倍角余弦公式,三角形面积公式,余弦定理的应用,求三角形的周长的范围问题.属于中档题.20、(Ⅰ),;(Ⅱ)1【解析】
(Ⅰ)易得为等比数列,再利用前项和与通项的关系求解的通项公式即可.(Ⅱ)由题可知要求的最小值,再分析的正负即可得随的增大而增大再判定可知即可.【详解】(Ⅰ)因为,故是以为首项,2为公比的等比数列,故.又当时,,解得.当时,…①…②①-②有,即.当时也满足.故为常数列,所以.即.故,(Ⅱ)因为对,恒成立.故只需求的最小值即可.设,则,又,又当时,时.当时,因为.故.综上可知.故随着的增大而增大,故,故【点睛】本题主要考查了根据数列的递推公式求解通项公式的方法,同时也考查了根据数列的增减性判断最值的问题,需要根据题意求解的通项,并根据二项式定理分析其正负,从而得到最小项.属于难题.21、(Ⅰ)(Ⅱ)见解析;(Ⅲ)见解析.【解析】试题分析:(Ⅰ)由题,所以故,,代入点斜式可得曲线在处的切线方程;(Ⅱ)由题(1)当时,在上单调递增.则函数在上的最小值是(2)当时,令,即,令,即(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,由的单调性可得在上的最小值是(iii)当,即时,在上单调递减,在上的最小值是(Ⅲ)当时,令,则是单调递减函数.因为,,所以在上存在,使得,即讨论可得在上单调递增,在上单调递减.所以当时,取得最大值是因为,所以由此可证试题解析:(Ⅰ)因为函数,且,所以,所以所以,所以曲线在处的切线方程是,即(Ⅱ)因为函数,所以(1)当时,,所以在上单调递增.所以函数在上的最小值是(2)当时,令,即,所以令,即,所以(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,在上单调递减,在上单调递增,所以在上的最小值是(iii)当,即时,在上单调递减,所以在上的最小值是综上所述,当时,在上的最小值是当时,在上的最小值是当时,在上的最小值是(Ⅲ)因为函数,所以所以当时,令,所以是单调递减函数.因为,,所以在上存在,使得,即所以当时,;当时,即当时,;当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【《借助现代化网络技术优化小学英语课堂教学探究》3400字】
- 【《初中历史人物教学探究》14000字(论文)】
- 2024年学校安全工作总结参考(四篇)
- 2024年学困生帮扶工作计划例文(三篇)
- 2024年司机岗位职责模版(五篇)
- 2024年大学秘书部工作计划(四篇)
- 2024年商品混凝土运输合同(三篇)
- 2024年学前班班主任的工作计划样本(三篇)
- 2024年小学跳绳兴趣小组活动计划(二篇)
- 2024年小班班级工作总结(三篇)
- 新视野大学英语视听说教程ppt课件
- 攻城掠地数据以及sdata文件修改教程
- 医疗废物转运箱消毒记录表
- 最新投标书密封条
- 看守所岗位职责
- 2019年青年英才培养计划项目申报表
- Sentaurus在ESD防护器件设计中的应用PPT课件
- 《抛物线焦点弦的性质探究》学案
- 人教版小学二年级数学上册全册教案【表格式】
- 佛山岭南新天地项目概况.
- 喷码机操作手册
评论
0/150
提交评论