版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省鸡西虎林市东方红林业局高一数学第一学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角α的终边在单位圆中的位置(阴影部分)是()A. B.C. D.2.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:12456123.13615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)3.函数fxA.0 B.1C.2 D.34.玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.玉雕壁画是采用传统的手工雕刻工艺,加工生产成的玉雕工艺画.某扇形玉雕壁画尺寸(单位:)如图所示,则该壁画的扇面面积约为()A. B.C. D.5.若,则()A. B.C. D.6.直线x+1=0的倾斜角为A.0 B.C. D.7.已知命题:“,方程有解”是真命题,则实数a的取值范围是()A. B.C. D.8.函数的零点所在的大致区间是()A. B.C. D.9.已知向量,向量,则的最大值,最小值分别是()A.,0 B.4,C.16,0 D.4,010.在四棱锥中,平面,中,,,则三棱锥的外接球的表面积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为,且.当时,则函数的对称中心__________;若,则值为__________.12.已知关于不等式的解集为,则的最小值是___________.13.已知单位向量与的夹角为,向量的夹角为,则cos=_______14.已知函数,,则它的单调递增区间为______15.已知圆,圆,则两圆公切线的方程为__________16.已知是定义在上的偶函数,并满足:,当,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合(1)求;(2)设集合,若,求实数的取值范围18.已知函数f(x)=ax2﹣(4a+1)x+4(a∈R).(1)若关于x不等式f(x)≥b的解集为{x|1≤x≤2},求实数a,b的值;(2)解关于x的不等式f(x)>0.19.某镇发展绿色经济,因地制宜将该乡镇打造成“特色农产品小镇”,根据研究发现:生产某农产品,固定投入万元,最大产量万斤,每生产万斤,需其他投入万元,,根据市场调查,该农产品售价每万斤万元,且所有产量都能全部售出.(利润收入成本)(1)写出年利润(万元)与产量(万斤)的函数解析式;(2)求年产量为多少万斤时,该镇所获利润最大?求出利润最大值.20.已知.(1)化简;(2)若是第四象限角,且,求的值.21.已知函数.(1)判断函数的奇偶性,并说明理由;(2)用函数单调性的定义证明函数在上是减函数
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用赋值法来求得正确答案.【详解】当k=2n,n∈Z时,n360°+45°≤α≤n360°+90°,n∈Z;当k=2n+1,n∈Z时,n360°+225°≤α≤n360°+270°,n∈Z.故选:C2、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.3、B【解析】作出函数图像,数形结合求解即可.【详解】解:根据题意,x3-1故函数y=x3与由于函数y=x3与所以方程x3所以函数fx故选:B4、D【解析】利用扇形的面积公式,利用大扇形面积减去小扇形面积即可.【详解】如图,设,,由弧长公式可得解得,,设扇形,扇形的面积分别为,则该壁画的扇面面积约为.故选:.5、A【解析】应用辅助角公式将条件化为,再应用诱导公式求.【详解】由题设,,则,又.故选:A6、C【解析】轴垂直的直线倾斜角为.【详解】直线垂直于轴,倾斜角为.故选:C【点睛】本题考查直线倾斜角,属于基础题.7、B【解析】由根的判别式列出不等关系,求出实数a的取值范围.【详解】“,方程有解”是真命题,故,解得:,故选:B8、C【解析】由题意,函数在上连续且单调递增,计算,,根据零点存在性定理判断即可【详解】解:函数在上连续且单调递增,且,,所以所以的零点所在的大致区间是故选:9、D【解析】利用向量的坐标运算得到|2用θ的三角函数表示化简求最值【详解】解:向量,向量,则2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分别是:16,0;所以|2的最大值,最小值分别是4,0;故选:D【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性10、B【解析】由题意,求长,即可求外接圆半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球的表面积.【详解】由题意中,,,则是等腰直角三角形,平面可得,,平面,,则的中点为球心设外接圆半径为,则,设球心到平面的距离为,则,由勾股定理得,则三棱锥的外接球的表面积故选:【点睛】本题考查三棱锥外接球表面积的求法,利用球的对称性确定球心到平面的距离,培养空间感知能力,中等题型.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】根据最小正周期以及关于的方程求解出的值,根据对称中心的公式求解出在上的对称中心;先求解出的值,然后根据角的配凑结合两角差的正弦公式求解出的值.【详解】因为最小正周期为,所以,又因为,所以,所以或,又因为,所以,所以,所以,令,所以,又因为,所以,所以对称中心为;因为,,所以,若,则,不符合,所以,所以,所以,故答案为:;.12、【解析】由题知,进而根据基本不等式求解即可.【详解】解:因为关于的不等式的解集为,所以是方程的实数根,所以,因为,所以,当且仅当,即时等号成立,所以的最小值是故答案为:13、【解析】根据题意,由向量的数量积计算公式可得•、||、||的值,结合向量夹角计算公式计算可得答案【详解】根据题意,单位向量,的夹角为,则•1×1×cos,32,3,则•(32)•(3)=92+22﹣9•,||2=(32)2=92+42﹣12•7,则||,||2=(3)2=922﹣6•7,则||,故cosβ.故答案为【点睛】本题主要考查向量的数量积的运算和向量的夹角的计算,意在考察学生对这些知识的掌握水平和分析推理能力.14、(区间写成半开半闭或闭区间都对);【解析】由得因为,所以单调递增区间为15、【解析】圆,圆心为(0,0),半径为1;圆,圆心为(4,0),半径为5.圆心距为4=5-1,故两圆内切.切点为(-1,0),圆心连线为x轴,所以两圆公切线的方程为,即.故答案.16、5【解析】根据可得周期,再结合偶函数,可将中的转化到内,可得的值.【详解】因为,所以,所以,即函数的一个周期为4,所以,又因为是定义在上的偶函数,所以,因当,,所以,所以.故答案为:2.5.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据指数函数的性质,结合集合并集的定义进行求解即可;(2)根据(1)的结论,结合集合是否为空集分类讨论进行求解即可.【小问1详解】由,得,所以;【小问2详解】当时:,即,当时:,解得,综上所述,的取值范围为.18、(1)-1,6;(2)答案见详解【解析】(1)由f(x)≥b的解集为{x|1≤x≤2}结合韦达定理即可求解参数a,b的值;(2)原式可因式分解为,再分类讨论即可,对再细分为即可求解.【详解】(1)由f(x)≥b得,因为f(x)≥b的解集为{x|1≤x≤2},故满足,,解得;(2)原式因式分解可得,当时,,解得;当时,的解集为;当时,,①若,即,则的解集为;②若,即时,解得;③若,即时,解得.【点睛】本题考查由一元二次不等式的解求解参数,分类讨论求解一元二次不等式,属于中档题.19、(1);(2)当年产量为万斤时,该镇所获利润最大,最大利润为万元【解析】(1)根据利润收入成本可得函数解析式;(2)分别在和两种情况下,利用二次函数和对勾函数最值的求法可得结果.【小问1详解】由题意得:;【小问2详解】当时,,则当时,;当时,(当且仅当,即时取等号),;,当,即年产量为万斤时,该镇所获利润最大,最大利润为万元.20、(1);(2).【解析】(1)根据诱导公式进行求解即可;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新员工一月工作总结(11篇)
- 2024年委托拍卖合同经典版(二篇)
- 2024年幼儿园保健医师工作计划例文(二篇)
- 2024年宾馆服务员岗位职责样本(四篇)
- 2024年幼儿园安全个人工作计划范本(二篇)
- 2024年小学读书活动总结范例(二篇)
- 2024年员工年终总结参考(二篇)
- 2024年实习个人总结标准样本(二篇)
- 2024年小学校长个人工作计划范例(三篇)
- 2024年土地转让合同例文(四篇)
- 2024年新智认知数字科技股份有限公司招聘笔试参考题库含答案解析
- 三年级语文下册第二单元群文阅读教学设计
- 习思想教材配套练习题 第七章 社会主义现代化建设的教育、科技、人才战略
- 护理学本科教育标准及专业认证
- 超融合系统需求说明
- 纳米生物技术与生物医学应用
- 水产品质量安全知识讲座
- 2024年江苏盐城燕舞集团有限公司招聘笔试参考题库含答案解析
- 技术协议范本通用模板
- 牛津深圳小学英语二年级上册单元测试卷附答案(全册)
- 环境应急预案演练计划
评论
0/150
提交评论