版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省枣强中学数学高一上期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一几何体的直观图如右图,下列给出的四个俯视图中正确的是()A. B.C. D.2.若集合,则集合()A. B.C. D.3.已知函数的值域是()A. B.C. D.4.方程的解所在区间是()A. B.C. D.5.一条直线与两条平行线中的一条为异面直线,则它与另一条()A.相交 B.异面C.相交或异面 D.平行6.已知点,.若过点的直线l与线段相交,则直线的斜率k的取值范围是()A. B.C.或 D.7.已知一个几何体的三视图如图所示,其中俯视图为半圆画,则该几何体的体积为()A B.C. D.8.函数为定义在R上的单调函数,则实数m的取值范围是()A. B.C. D.9.已知函数,且,则A.3 B.C.9 D.10.集合{0,1,2}的所有真子集的个数是A.5 B.6C.7 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点为______12.已知,则____________13.已知,则函数的最大值为__________.14.已知幂函数经过点,则______15.已知圆柱的底面半径为,高为2,若该圆柱的两个底面的圆周都在一个球面上,则这个球的表面积为______16.若函数f(x)=的定义域为R,则实数a的取值范围是:_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为二次函数,且(1)求的表达式;(2)设,其中,m为常数且,求函数的最值18.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求的值19.化简或求下列各式的值(1);(2)(lg5)2+lg5•lg20+20.设全集为,或,.(1)求,;(2)求.21.设函数的定义域为集合的定义域为集合(1)当时,求;(2)若“”是“”的必要条件,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】通过几何体结合三视图的画图方法,判断选项即可【详解】解:几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可见线段,所以C、D不正确;几何体的上部的棱与正视图方向垂直,所以A不正确,故选B【点睛】本题考查三视图的画法,几何体的结构特征是解题的关键2、D【解析】解方程,再求并集.【详解】故选:D.3、B【解析】由于,进而得,即函数的值域是【详解】解:因为,所以所以函数的值域是故选:B4、C【解析】判断所给选项中的区间的两个端点的函数值的积的正负性即可选出正确答案.【详解】∵,∴,,,,∴,∵函数的图象是连续的,∴函数的零点所在的区间是.故选C【点睛】本题考查了根据零存在原理判断方程的解所在的区间,考查了数学运算能力.5、C【解析】如下图所示,三条直线平行,与异面,而与异面,与相交,故选C.6、D【解析】由已知直线恒过定点,如图若与线段相交,则,∵,,∴,故选D.7、C【解析】由三视图可知,该几何体为半个圆柱,故体积为.8、B【解析】由在单调递增可得函数为增函数,保证两个函数分别单调递增,且连接点处左端小于等于右端的函数值即可【详解】由题意,函数为定义在R上的单调函数且在单调递增故在单调递增,即且在处,综上:解得故选:B9、C【解析】利用函数的奇偶性以及已知条件转化求解即可【详解】函数g(x)=ax3+btanx是奇函数,且,因为函数f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,则=﹣g()+6=3+6=9故选C【点睛】本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.已知函数解析式求函数值,可以直接将变量直接代入解析式从而得到函数值,直接代入较为繁琐的题目,可以考虑函数的奇偶性的应用,利用部分具有奇偶性的特点进行求解,就如这个题目.10、C【解析】集合{0,1,2}中有三个元素,因此其真子集个数为.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、1和【解析】由,解得的值,即可得结果【详解】因为,若,则,即,整理得:可解得:或,即函数的零点为1和,故答案为1和.【点睛】本题主要考查函数零点的计算,意在考查对基础知识的理解与应用,属于基础题12、##0.8【解析】利用同角三角函数的基本关系,将弦化切再代入求值【详解】解:,则,故答案为:13、【解析】换元,,化简得到二次函数,根据二次函数性质得到最值.【详解】设,,则,,故当,即时,函数有最大值为.故答案为:.【点睛】本题考查了指数型函数的最值,意在考查学生的计算能力,换元是解题的关键.14、##0.5【解析】将点代入函数解得,再计算得到答案.【详解】,故,.故答案为:15、【解析】直接利用圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,利用勾股定理求出的值,然后利用球体的表面积公式可得出答案【详解】设球的半径为,由圆柱的性质可得,圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,因为圆柱的底面半径为,高为2,所以,,因此,这个球的表面积为,故答案为【点睛】本题主要圆柱的几何性质,考查球体表面积的计算,意在考查空间想象能力以及对基础知识的理解与应用,属于中等题16、【解析】根据题意,有在R上恒成立,则,即可得解.【详解】若函数f(x)=的定义域为R,则在R上恒成立,则,解得:,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2);【解析】(1)利用待定系数法可求的表达式;(2)利用换元法结合二次函数的单调性可求函数的最值【小问1详解】设,因为,所以整理的,故有,即,所以.【小问2详解】,设,故又,∵,所以,在为增函数,∴即时,;即时,18、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果;(Ⅱ)由可得出,利用同角三角函数的基本关系可求得的值,利用两角和的正弦公式可求得的值详解】(Ⅰ)令,,得,令,得;令,得.因此,函数在区间上的单调递增区间为,;(Ⅱ)由,得,,又,,因此,【点睛】本题考查正弦型函数的单调区间的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题.19、(1);(2)2【解析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可【详解】(1)原式=;(2)原式=lg5(lg5+lg20)+lg4=2(lg5+lg2)=2【点睛】本题主要考查分数指数幂和对数的运算,考查对数的换底公式.意在考查学生对这些知识的理解掌握水平和计算能力.20、(1)或,(2)或【解析】(1)根据集合的交集和并集的定义即可求解;(2)先根据补集的定义求出,然后再由交集的定义即可求解.【小问1详解】解:因为或,,所以或,;【小问2详解】解:因为全集为,或,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新员工一月工作总结(11篇)
- 2024年委托拍卖合同经典版(二篇)
- 2024年幼儿园保健医师工作计划例文(二篇)
- 2024年宾馆服务员岗位职责样本(四篇)
- 2024年幼儿园安全个人工作计划范本(二篇)
- 2024年小学读书活动总结范例(二篇)
- 2024年员工年终总结参考(二篇)
- 2024年实习个人总结标准样本(二篇)
- 2024年小学校长个人工作计划范例(三篇)
- 2024年土地转让合同例文(四篇)
- 2024年新智认知数字科技股份有限公司招聘笔试参考题库含答案解析
- 三年级语文下册第二单元群文阅读教学设计
- 习思想教材配套练习题 第七章 社会主义现代化建设的教育、科技、人才战略
- 护理学本科教育标准及专业认证
- 超融合系统需求说明
- 纳米生物技术与生物医学应用
- 水产品质量安全知识讲座
- 2024年江苏盐城燕舞集团有限公司招聘笔试参考题库含答案解析
- 技术协议范本通用模板
- 牛津深圳小学英语二年级上册单元测试卷附答案(全册)
- 环境应急预案演练计划
评论
0/150
提交评论