版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省各地2025届高二数学第一学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列{}满足,且,若,则=()A.-8 B.-11C.8 D.112.与直线关于轴对称的直线的方程为()A. B.C. D.3.我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问次日织几问?其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,请问第二天织布的尺数是()A. B.C. D.4.在棱长为2的正方体中,是棱上一动点,点是面的中心,则的值为()A.4 B.C.2 D.不确定5.已知一质点的运动方程为,其中的单位为米,的单位为秒,则第1秒末的瞬时速度为()A. B.C. D.6.已知曲线C的方程为,则下列结论正确的是()A.当时,曲线C为圆B.“”是“曲线C为焦点在x轴上的双曲线”的充分而不必要条件C.“”是“曲线C为焦点在x轴上的椭圆”的必要而不充分条件D.存在实数k使得曲线C为双曲线,其离心率为7.设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是()A. B.C. D.8.已知圆的方程为,则圆心的坐标为()A. B.C. D.9.命题,,则为()A., B.,C., D.,10.如图是正方体的平面展开图,在这个正方体中①与平行;②与是异面直线;③与成60°角;④与是异面直线以上四个结论中,正确结论的序号是A.①②③ B.②④C.③④ D.②③④11.沙糖桔网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的最大值为90万元,最小值为30万元 B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30 D.7月份的利润最大12.已知:,:,若是的充分不必要条件,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知.若在定义域内单调递增,则实数的取值范围为______.14.已知函数,是的导函数,则______15.已知是双曲线的左焦点,圆与双曲线在第一象限的交点,若的中点在双曲线的渐近线上,则此双曲线的离心率是___________.16.若正四棱柱的底面边长为5,侧棱长为4,则此正四棱柱的体积为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知两定点,,动点与两定点的斜率之积为(1)求动点M的轨迹方程;(2)设(1)中所求曲线为C,若斜率为的直线l过点,且与C交于P,Q两点.问:在x轴上是否存在一点T,使得对任意且,都有(其中,分别表示,的面积).若存在,请求出点T的坐标;若不存在,请说明理由18.(12分)如图,在四棱锥S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱锥S-ABCD的侧面积;(2)求平面SCD与平面SAB的夹角的余弦值.19.(12分)已知椭圆长轴长为4,A,B分别为左、右顶点,P为椭圆上不同于A,B的动点,且点在椭圆上,其中e为椭圆的离心率(1)求椭圆的标准方程;(2)直线AP与直线(m为常数)交于点Q,①当时,设直线OQ的斜率为,直线BP的斜率为.求证:为定值;②过Q与PB垂直的直线l是否过定点?如果是,请求出定点坐标;如果不是,请说明理由20.(12分)已知椭圆的焦点为,且该椭圆过点(1)求椭圆的标准方程;(2)若椭圆上的点满足,求的值21.(12分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和22.(10分)如图,在四棱锥中,平面,底面为菱形,且,,分别为,的中点(Ⅰ)证明:平面;(Ⅱ)点在棱上,且,证明:平面
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用递推关系,结合取值,求得即可.【详解】因为,且,,故可得,解得(舍),;同理求得,,.故选:C.2、D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.3、C【解析】根据等比数列求和公式求出首项即可得解.【详解】由题可得该女子每天织布的尺数成等比数列,设其首项为,公比为,则,解得所以第二天织布的尺数为.故选:C4、A【解析】画出图形,建立空间直角坐标系,用向量法求解即可【详解】如图,以为原点建立如图所示的空间直角坐标系,因为正方体棱长为2,点是面的中心,是棱上一动点,所以,,,故选:A5、C【解析】求出即得解.【详解】解:由题意得,故质点在第1秒末的瞬时速度为.故选:C6、C【解析】根据椭圆、双曲线的定义及简单几何性质计算可得;【详解】解:由题意,曲线C的方程为,对于A中,当时,曲线C的方程为,此时曲线C表示椭圆,所以A错误;对于B中,当曲线C的方程为表示焦点在x轴上的双曲线时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以B不正确;对于C中,当曲线C的方程为表示焦点在x轴上的椭圆时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以C正确;对于D中,当曲线C的方程为表示双曲线,且离心率为时,此时双曲线的实半轴长等于虚半轴长,此时,解得,此时方程表示圆,所以不正确.故选:C.7、C【解析】设,由,根据两点间的距离公式表示出,分类讨论求出的最大值,再构建齐次不等式,解出即可【详解】设,由,因为,,所以,因为,当,即时,,即,符合题意,由可得,即;当,即时,,即,化简得,,显然该不等式不成立故选:C【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值8、A【解析】将圆的方程配成标准方程,可求得圆心坐标.【详解】圆的标准方程为,圆心的坐标为.故选:A.9、B【解析】直接利用特称命题的否定是全称命题写出结果即可.【详解】命题,为特称命题,而特称命题的否定是全称命题,所以命题,,则为:,.故选:B10、C【解析】根据平面展开图可得原正方体,根据各点的分布逐项判断可得正确的选项.【详解】由平面展开图可得原正方体如图所示:由图可得:为异面直线,与不是异面直线,是异面直线,故①②错误,④正确.连接,则为等边三角形,而,故或其补角为与所成的角,因为,故与所成的角为,故③正确.综上,正确命题的序号为:③④.故选:C.【点睛】本题考查正方体的平面展开图,注意展开图中的点与正方体中的顶点的对应关系,本题属于容易题.11、B【解析】根据图形和中位数、众数的概念依次判断选项即可.【详解】A:由图可知,月收入的最大值为90,最小值为30,故A正确;B:各个月的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,所以总利润为20+30+20+10+30+30+60+40+30+30+50+30=380(万元),故B错误;C:这12个月利润的中位数与众数均为30,故C正确;D:7月份的利润最大,为60万元,故D正确.故选:B12、C【解析】由是的充分不必要条件,则是的充分不必要条件,再根据对应集合的包含关系可得答案.【详解】由,即,设,由是的充分不必要条件,则是的充分不必要条件所以,则故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将问题转化为在上恒成立,再分离参数转化为求函数的最值问题即可得到实数的取值范围【详解】因为,所以;因为在内单调递增,所以在上恒成立,即在上恒成立,因为,所以.故答案为:14、2【解析】根据基本初等函数的导数公式及导数的加法法则,对求导,再求即可.【详解】由题设,,所以.故答案为:15、【解析】计算点渐近线的距离,从而得,由勾股定理计算,由双曲线定义列式,从而计算得,即可计算出离心率.【详解】设双曲线右焦点为,因为的中点在双曲线的渐近线上,由可知,,因为为中点,所以,所以,即垂直平分线段,所以到渐近线的距离为,可得,所以,由双曲线定义可知,,即,所以,所以.故答案为:【点睛】双曲线的离心率是椭圆最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围)16、100【解析】根据棱柱体积公式直接可得.【详解】故答案为:100三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在;【解析】(1)设出点的坐标,根据,即可直接求出动点M的轨迹方程;(2)根据题意写出直线的方程,把直线的方程与曲线的方程联立,消元,写韦达;根据条件,同时结合三角形的面积公式可得出;从而结合韦达定理可求出点T的坐标.【小问1详解】设,由,得,即,所以动点M的轨迹方程为.【小问2详解】设PT与RT夹角为,QT与RT夹角为,因为,所以,即,所以,设,,,直线l的方程为,因为,所以,即,所以,即①,由,得,所以,代入①式,得,解得,所以存在点,使得对任意且,都有.18、(1)(2)【解析】(1)根据垂直关系依次求解每个侧面三角形边长和面积即可得解;(2)建立空间直角坐标系,利用向量法求解.小问1详解】由题可得:,则,SA⊥底面ABCD,所以,SA平面SAB,平面SAB⊥底面ABCD,交线,所以BC⊥平面SAB,BC⊥BS,,所以四棱锥的侧面积【小问2详解】以A为原点,建立空间直角坐标系如图所示:设平面SCD的法向量,,取所以取为平面SAB的的法向量所以平面SCD与平面SAB的夹角的余弦值.19、(1)(2)①证明见解析;②直线过定点;【解析】(1)依题意得到方程组,解得,即可求出椭圆方程;(2)①由(1)可得,,设,,表示出直线的方程,即可求出点坐标,从而得到、,即可求出;②在直线方程中令,即可得到的坐标,再求出直线的斜率,即可得到直线的方程,从而求出定点坐标;【小问1详解】解:依题意可得,即,解得或(舍去),所以,所以椭圆方程为【小问2详解】解:①由(1)可得,,设,,则直线的方程为,令则,所以,,所以,又点在椭圆上,所以,即,所以,即为定值;②因为直线的方程为,令则,因为,所以,所以直线的方程为,即又,所以,令,解得,所以直线过定点;20、(1)(2)【解析】(1)利用两点间距离公式求得P到椭圆的左右焦点的距离,然后根据椭圆的定义得到a的值,结合c的值,利用a,b,c的平方关系求得的值,再结合焦点位置,写出椭圆的标准方程(2)利用向量的数量积,求得点满足的条件,再结合椭圆的方程,解得的值【小问1详解】解:设椭圆的长半轴长为a,短半轴长为b,半焦距为c,因为所以,即,又因为c=2,所以,又因为椭圆的中心在原点,焦点在x轴上,所以该椭圆的标准方程为.【小问2详解】解:因为,所以,即,又,所以,即.21、(1)或(2)【解析】(1)利用等差数列通项公式,可构造方程组求得,由此可得通项公式;(2)由(1)可得,利用分组求和法,结合等差等比求和公式可得结果.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟草依赖病因介绍
- 《渗透器材》课件
- (高考资料)2023届高考蓝皮书全国卷标准样卷(一)试题
- 开题报告:中国教师资格制度实施30年效能研究
- 开题报告:职业高原与组织支持:高校教师职业生涯中后期发展研究
- 三跨(140+300+140)连续双塔钢箱梁斜拉桥设计全套(毕业设计)
- 2024届南昌市重点中学高三普通高考测试(二)数学试题
- 2024年度杭州市农业产品采购合同3篇
- 2024年度个人仓储业务合作承包合同样本
- 2024年商铺买卖居间服务合同一
- MSOP(测量标准作业规范)测量SOP
- 体质健康成绩测试全自动化计算模板
- 跟踪审计过程中审计单位与参建单位沟通与配合论文
- 机械制图习题集-附带答案
- 组织行为学马工程题库
- 小学英语复习讲座课件
- 2023年中级经济师考试真题及答案完整版
- 宣传广告制作定点供应商采购方案(技术方案)
- 垃圾清运服务投标方案(技术方案)
- 钢筋材料计划申报表
- 门诊处方格式示例
评论
0/150
提交评论