




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西壮族自治区百色市田阳县田阳高中高二上数学期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若倾斜角为的直线过,两点,则实数()A. B.C. D.2.数列,,,,…,的通项公式可能是()A. B.C. D.3.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面4.已知实数、满足,则的最大值为()A. B.C. D.5.已如双曲线(,)的左、右焦点分别为,,过的直线交双曲线的右支于A,B两点,若,且,则该双曲线的离心率为()A. B.C. D.6.将上各点的纵坐标不变,横坐标变为原来的2倍,得到曲线C,若直线l与曲线C交于A,B两点,且AB中点坐标为M(1,),那么直线l的方程为()A. B.C. D.7.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.8.大数学家阿基米德的墓碑上刻有他最引以为豪的数学发现的象征图——球及其外切圆柱(如图).以此纪念阿基米德发现球的体积和表面积,则球的体积和表面积均为其外切圆柱体积和表面积的()A. B.C. D.9.在数列中,,,则()A. B.C. D.10.若、且,则下列式子一定成立的是()A. B.C. D.11.《周髀算经》中有这样一个问题:从冬至起,接下来依次是小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种共十二个节气,其日影长依次成等差数列,其中大寒、惊蛰、谷雨三个节气的日影长之和为25.5尺,且前九个节气日影长之和为85.5尺,则立春的日影长为()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺12.已知数列中,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从甲、乙、丙、丁4位同学中,选出2位同学分别担任正、副班长的选法数可以用表示为____________.14.已知,且,则_____________15.将集合且中所有的元素从小到大排列得到的数列记为,则___________(填数值).16.随机投掷一枚均匀的硬币两次,则两次都正面朝上的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中国男子篮球职业联赛(ChineseBasketballAssociation),简称中职篮(CBA),由中国国家体育总局篮球运动管理中心举办的男子职业篮球赛事,旨在全面提高中国篮球运动水平,其中诞生了姚明、王治郅、易建联、朱芳雨等球星.该比赛分为常规赛和季后赛.由于新冠疫情关系,某年联赛采用赛会制:所有球队集中在同一个地方比赛,分两个阶段进行,每个阶段采用循环赛,分主场比赛和客场比赛,积分排名前8球队进入季后赛.下表是A队在常规赛60场比赛中的比赛结果记录表.阶段比赛场数主场场数获胜场数主场获胜场数第一阶段30152010第二阶段30152515(1)根据表中数据,完成下面列联表:A队胜A队负合计主场5客场20合计60(2)根据(1)中列联表,判断是否有90%的把握认为比赛的“主客场”与“胜负”之间有关?附:.0.1000.0500.025k2.7063.8415.02418.(12分)在①,②,③,这三个条件中任选一个,补充在下面的问题中,并解答问题在中,内角A,,的对边分别为,,,且满足______________(1)求;(2)若的面积为,在边上,且,求的最小值注:如果选择多个条件分别解答,按第一个解答计分19.(12分)在平面直角坐标系中,圆外的点在轴的右侧运动,且到圆上的点的最小距离等于它到轴的距离,记的轨迹为(1)求的方程;(2)过点的直线交于,两点,以为直径的圆与平行于轴的直线相切于点,线段交于点,证明:是的中点20.(12分)已知函数.(1)求曲线在点处的切线的方程.(2)若直线为曲线切线,且经过坐标原点,求直线的方程及切点坐标.21.(12分)某校为了了解在校学生的支出情况,组织学生调查了该校2014年至2020年学生的人均月支出y(单位:百元)的数据如下表:年份2014201520162017201820192020年份代号t1234567人均月支出y3.94.34.65.45.86.26.9(1)求2014年至2020年中连续的两年里,两年人均月支出都超过4百元的概率;(2)求y关于t的线性回归方程;(3)利用(2)中的回归方程,预测该校2022年的人均月支出.附:最小二乘估计公式:,22.(10分)已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点作直线,与直线和椭圆分别交于两点,(与不重合).判断以为直径的圆是否过定点,如果过定点,求出定点坐标;如果不过定点,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线的倾斜角和斜率的关系得到直线的斜率为,再根据两点的斜率公式计算可得;【详解】解:因为直线的倾斜角为,所以直线的斜率为,所以,解得;故选:C2、D【解析】利用数列前几项排除A、B、C,即可得解;【详解】解:由,排除A,C,由,排除B,分母为奇数列,分子为,故数列的通项公式可以为,故选:D3、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D4、A【解析】作出可行域,利用代数式的几何意义,利用数形结合可求得的最大值.【详解】作出不等式组所表示的可行域如下图所示:联立可得,即点,代数式的几何意义是连接可行域内一点与定点连线的斜率,由图可知,当点在可行域内运动时,直线的倾斜角为锐角,当点与点重合时,直线的倾斜角最大,此时取最大值,即.故选:A.5、A【解析】先作辅助线,设出边长,结合题干条件得到,,利用勾股定理得到关于的等量关系,求出离心率.【详解】连接,设,则根据可知,,因为,由勾股定理得:,由双曲线定义可知:,,解得:,,从而,解得:,所以,,由勾股定理得:,从而,即该双曲线的离心率为.故选:A6、A【解析】先根据题意求出曲线C的方程,然后利用点差法求出直线l的斜率,从而可求出直线方程【详解】设点为曲线C上任一点,其在上对应在的点为,则,得,所以,所以曲线C的方程为,设,则,两方程相减整理得,因为AB中点坐标为M(1,),所以,即,所以,所以,所以直线l的方程为,即,故选:A7、B【解析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B8、C【解析】设球的半径为,则圆柱的底面半径为,高为,分别求出球的体积与表面积,圆柱的体积与表面积,从而得出答案.【详解】设球的半径为,则圆柱的底面半径为,高为所以球的体积为,表面积为.圆柱的体积为:,所以其体积之比为:圆柱的侧面积为:,圆柱的表面积为:所以其表面积之比为:故选:C9、A【解析】根据已知条件,利用累加法得到的通项公式,从而得到.【详解】由,得,所以,所以.故选:A.10、B【解析】构造函数,利用函数在上的单调性可判断AB选项;构造函数,利用函数在上的单调性可判断CD选项.【详解】对于AB选项,构造函数,其中,则,所以,函数在上单调递增,因为、且,则,即,A错B对;对于CD选项,构造函数,其中,则.当时,,此时函数单调递减,当时,,此时函数单调递增,故函数在上不单调,无法确定与的大小关系,故CD都错.故选:B.11、B【解析】设影长依次成等差数列,公差为,根据题意结合等差数列的通项公式及前项和公式求出首项和公差,即可得出答案.【详解】解:设影长依次成等差数列,公差为,则,前9项之和,即,解得,所以立春的日影长为.故选:B.12、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意知:从4为同学中选出2位进行排列,即可写出表示方式.【详解】1、从4位同学选出2位同学,2、把所选出的2位同学任意安排为正、副班长,∴选法数为.故答案为:.14、2【解析】由共线向量得,解方程即可.【详解】因为,所以,解得.故答案为:215、992【解析】列举数列的前几项,观察特征,可得出.详解】由题意得观察规律可得中,以为被减数的项共有个,因为,所以是中的第5项,所以.故答案为:992.16、##【解析】列举出所有情况,利用古典概型的概率公式求解即可【详解】随机投掷一枚均匀的硬币两次,共有:正正,正反,反正,反反共4种情况,两次都是正面朝上的有:正正1种情况,所以两次都正面朝上的概率为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)填表见解析(2)没有【解析】(1)由A队在常规赛60场比赛中的比赛结果记录表可得答案;(2)根据(1)中的列联表,代入可得答案.【小问1详解】(1)根据表格信息得到列联表:A队胜A队负合计主场25530客场201030合计451560【小问2详解】所以没有90%的把握认为比赛的“主客场”与“胜负”之间有关.18、选择见解析;(1);(2)【解析】(1)选条件①.利用正弦定理边角互化,结合两角和的正弦公式可得,从而可得答案;选条件②.边角互化、切化弦,结合两角和的正弦公式可得,从而得答案;选条件③.边角互化,利用余弦定理可得,从而可得答案;(2)由三角形面积公式可得得,再利用余弦定理与基本不等式可得答案.【详解】(1)方案一:选条件①由可得,由正弦定理得,因为,所以,所以,故,又,于是,即,因为,所以方案二:选条件②因为,所以由正弦定理及同角三角函数的基本关系式,得,即,因为,所以,又,所以,因为,所以方案三:选条件③∵,∴,即,∴,∴又,所以(2)由题意知,得由余弦定理得,当且仅当且,即,时取等号,所以的最小值为19、(1)(2)证明见解析【解析】(1)设点,求得到圆上的最小距离为,根据题意得到,整理即可求得曲线的方程;(2)当直线的斜率不存在时,显然成立;当直线的斜率存在时,设直线的方程,联立方程组求得和,得到,结合抛物线的定义和方程求得,,结合,即可求解.【小问1详解】解:设点,(其中),由圆,可得圆心坐标为,因为在圆外,所以到圆上的点的最小距离为,又由到圆上的点的最小距离等于它到轴的距离,可得,即,整理得,即曲线的方程为【小问2详解】解:当直线的斜率不存在时,可得点为抛物线的交点,点为坐标原点,点为抛物线的准线与轴的交点,显然满足是的中点;当直线的斜率存在时,设直线的方程,设,,,则,联立方程组,整理得,因为,且,则,故,由抛物线的定义知,设,可得,所以,又因为,所以,解得,所以,因为在地物线上,所以,即,所以,即是的中点20、(1);(2)直线的方程为,切点坐标为.【解析】(1)先求导数,再根据导数几何意义得切线斜率,最后根据点斜式得结果,(2)设切点,根据导数几何意义得切线斜率,根据点斜式得切线方程,再根据切线过坐标原点解得结果.【详解】(1).所以在点处的切线的斜率,∴切线的方程为;(2)设切点为,则直线的斜率为,所以直线的方程为:,所以又直线过点,∴,整理,得,∴,∴,的斜率,∴直线的方程为,切点坐标为.【点睛】本题考查导数几何意义以及利用导数求切线方程,考查基本分析求解能力,属基础题.21、(1);(2);(3)7.8百元.【解析】(1)应用列举法,结合古典概型计算公式进行进行求解即可;(2)根据题中所给的公式进行计算求解即可;(3)根据(2)的结论,利用代入法进行求解即可.【小问1详解】2014年至2020年中连续的两年有、、、、、共6种组合,其中只有不满足连续两年人均月支出都超过4百元,所以连续两年人均月支出都超过4百元的概率为;【小问2详解】由已知数据分别求出公式中的量.,,,,所求回归方程为;小问3详解】由(2)知,,将2022年的年份代号代入(2)中的回归方程,得,故预测该校2022年人均月支出为7.8百元.22、(1)(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焦作新材料职业学院《大数据分析的Python基础》2023-2024学年第二学期期末试卷
- 重庆财经学院《设计素描(1)》2023-2024学年第二学期期末试卷
- 吉林省海门市2025届初三十月月考生物试题含解析
- 湖南工业大学《翻译简史》2023-2024学年第二学期期末试卷
- 怎样开发客户资源
- 邯郸市高一下学期期末考试物理试题
- 保育小班期末工作总结范文(16篇)
- 幼儿园家庭教育工作总结(29篇)
- 幼儿园下学期安全工作总结2025(3篇)
- 护理人员全年工作总结(29篇)
- 24秋国开《西方行政学说》形考任务1学习活动(二)答案(第1套)
- 《跨境电子商务零售进口商品清单》
- 防汛抗旱知识培训材料
- 临时用地复垦措施施工方案
- 军队文职人员转正述职报告
- 大学生劳动教育(微课版)全书教案
- 公司道德和商业行为准则
- 13G322-1~4钢筋混凝土过梁(2013年合订本)
- 【年产1000吨富硒沙棘果汁工艺生产设计16000字(论文)】
- 电驱动桥技术及技术路线-2024-06-技术资料
- 职业素养提升第2版(大学生职业素养指导课程)全套教学课件
评论
0/150
提交评论