版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林油田实验中学2025届数学高一上期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.祖暅原理也称祖氏原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A,B为两个等高的几何体,p:A、B的体积相等,q:A、B在同一高处的截面积相等.根据祖暅原理可知,p是q的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.若实数满足,则的最小值为()A.1 B.C.2 D.43.如图,在四棱锥中,底面为正方形,且,其中,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面,其中恒成立的为()A.①③ B.③④C.①④ D.②③4.函数的最小值为()A. B.C. D.5.已知角的终边过点,若,则A.-10 B.10C. D.6.圆的半径为,该圆上长为的弧所对的圆心角是A. B.C. D.7.已知直线、、与平面、,下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则8.若直线与直线垂直,则()A.6 B.4C. D.9.已知扇形周长为,圆心角为,则扇形面积为()A. B.C. D.10.设集合,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若则函数的最小值为________12.在棱长为2的正方体ABCD-中,E,F,G,H分别为棱,,,的中点,将该正方体挖去两个大小完全相同的四分之一圆锥,得到如图所示的几何体,现有下列四个结论:①CG//平面ADE;②该几何体的上底面的周长为;③该几何体的的体积为;④三棱锥F-ABC的外接球的表面积为其中所有正确结论的序号是____________13.在中,边上的中垂线分别交于点若,则_______14.函数在上为单调递增函数,则实数的取值范围是______15.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________16.已知向量,满足=(3,-4),||=2,|+|=,则,的夹角等于______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的定义域为R,其图像关于原点对称,且当时,(1)请补全函数的图像,并由图像写出函数在R上的单调递减区间;(2)若,,求的值18.已知函数.(1)求函数的定义域;(2)若函数的最小值为,求的值.19.已知函数是偶函数,且,.(1)当时,求函数的值域;(2)设,,求函数的最小值;(3)设,对于(2)中的,是否存在实数,使得函数在时有且只有一个零点?若存在,求出实数的取值范围;若不存在,请说明理由.20.某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?21.在平行四边形中,过点作的垂线交的延长线于点,.连结交于点,如图1,将沿折起,使得点到达点的位置.如图2.证明:直线平面若为的中点,为的中点,且平面平面求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据与的推出关系判断【详解】已知A,B为两个等高的几何体,由祖暅原理知,而不能推出,可举反例,两个相同的圆锥,一个正置,一个倒置,此时两个几何体等高且体积相等,但在同一高处的截面积不相等,则是的必要不充分条件故选:C2、C【解析】先根据对数的运算得到,再用基本不等式求解即可.【详解】由对数式有意义可得,由对数的运算法则得,所以,结合,可得,所以,当且仅当时取等号,所以.故选:.3、A【解析】分析:如图所示,连接AC、BD相交于点O,连接EM,EN(1)由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC.可得AC⊥平面SBD.由已知E,M,N分别是BC,CD,SC的中点,利用三角形的中位线可得EM∥BD,MN∥SD,于是平面EMN∥平面SBD,进而得到AC⊥平面EMN,AC⊥EP;(2)由异面直线的定义可知:EP与BD是异面直线,因此不可能EP∥BD;(3)由(1)可知:平面EMN∥平面SBD,可得EP∥平面SBD;(4)由(1)同理可得:EM⊥平面SAC,可用反证法证明:当P与M不重合时,EP与平面SAC不垂直详解:如图所示,连接AC、BD相交于点O,连接EM,EN对于(1),由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确对于(2),由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;对于(3),由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确对于(4),由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确故选A点睛:本题考查了空间线面、面面的位置关系判定,属于中档题.对于这种题目的判断一般是利用课本中的定理和性质进行排除,判断.还可以画出样图进行判断,利用常见的立体图形,将点线面放入特殊图形,进行直观判断.4、B【解析】用二倍角公式及诱导公式将函数化简,再结合二次函数最值即可求得最值.【详解】由因为所以当时故选:B5、A【解析】因为角的终边过点,所以,得,故选A.6、B【解析】由弧长公式可得:,解得.考点:弧度制.7、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因为,所以平面内存在直线,若,则,且,所以,故D正确.故选:D8、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.9、B【解析】周长为则,代入扇形弧长公式解得,代入扇形面积公式即可得解.【详解】由题意知,代入方程解得,所以故选:B【点睛】本题考查扇形的弧长、面积公式,属于基础题.10、B【解析】,选B.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】结合图象可得答案.【详解】如图,函数在同一坐标系中,且,所以在时有最小值,即.故答案为:1.12、①③④【解析】由面面平行的性质判断①;由题设知两段圆弧的长度之和为,即可得上底周长判断②;利用正方体体积及圆锥体积的求法求几何体体积判断③;首先确定外接球球心位置,进而求出球体的半径,即可得F-ABC的外接球的表面积判断④.【详解】因为面面,面,所以CG//平面,即CG//平面ADE,①正确;依题意知,弧EF与弧HG均为圆弧,且这两段圆弧的长度之和为,所以该几何体的上底面的周长为,该几何体的体积为8-,②错误,③正确;设M,N分别为下底面、上底面的中心,则三棱锥F-ABC的外接球的球心O在MN上设OM=h,则,解得,从而球O的表面积为,④正确.故答案为:①③④13、4【解析】设,则,,又,即,故答案为.14、【解析】令∴即函数的增区间为,又函数在上为单调递增函数∴令得:,即,得到:,又∴实数的取值范围是故答案为15、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.16、【解析】利用求解向量间的夹角即可【详解】因为,所以,因为,所以,即,所以,所以,因为向量夹角取值范围是,所以向量与向量的夹角为【点睛】本题考查向量的运算,这种题型中利用求解向量间的夹角同时需注意三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)作图见解析;单调减区间是和(2)0【解析】(1)由图象关于原点对称,补出另一部分,结合图可求出函数的单调减区间,(2)先求出的值,然后根据函数的奇偶性和解析式求解即可【小问1详解】因为函数的图像关于原点对称,所以是R上的奇函数,故由对称性画出图像在R上的单调减区间是和【小问2详解】,所以18、(1);(2).【解析】(1)由即可求解;(2)先整理,利用复合函数单调性即可求出的最小值,令最小值等于4解方程即可.【详解】(1)若有意义,则,解得,故的定义域为;(2)由于令,则∵时,在上是减函数,∴又,则,即,解得或(舍)故若函数的最小值为,则.【点睛】关键点点睛:本题在解题的过程中要注意定义域,关键在于的范围和的单调性.19、(1)(2)(3)存在,【解析】(1)由条件求出,由此求出,利用单调性求其在时的值域;(2)利用换元法,考虑轴与区间的位置关系求,(3)令,由已知可得函数,,在上有且仅有一个交点,由此列不等式求的取值范围.【小问1详解】因为函数是偶函数,故而,可得,则,故易知在上单调递增,故,;故【小问2详解】令,故;则,对称轴为①当时,在上单增,故;②当时,在上单减,在上单增,故;③当时,在上单减,故;故函数的最小值【小问3详解】由(2)知当时,;则,即令,,问题等价于两个函数与的图象在上有且只有一个交点;由,函数的图象开口向下,对称轴为,在上单调递减,在上单调递增,可图知;故【点睛】函数的零点个数与函数和的图象的交点个数相等,故可通过函数图象研究形如函数的零点问题.20、此商品的最佳售价应为元.【解析】设最佳售价为元,最大利润为元,当时,取得最大值,所以应定价为元21、(1)见解析;(2)【解析】(1)在平面图形内找到,则在立体图形中,可证面.(2)解法一:根据平面平面,得到平面,得到到平面的距离,根据平面图形求出底面平的面积,求得三棱锥的体积.解法二:找到三棱锥的体积与四棱锥的体积之间的关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络培训中心行业法规与政策研究-洞察分析
- 隐私保护的隐私设计原则-洞察分析
- 隐式知识图谱构建-洞察分析
- 阴道松弛矫正临床研究-洞察分析
- 心理干预对ICU患者家属心理影响-洞察分析
- 异构存储中的位标识优化-洞察分析
- 图文混排设计原则-洞察分析
- 异构系统优化与调度-洞察分析
- 《证据的种类和分类》课件
- 2024年株洲冶炼集团有限责任公司医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 人教版八年级上册生物全册教案(完整版)教学设计含教学反思
- 2024年银行考试-银行间本币市场交易员资格考试近5年真题附答案
- 人教版小学四年级数学上册期末复习解答题应用题大全50题及答案
- 冀教版五年级上册脱式计算题100道及答案
- 你是排长我是兵(2022年山东济南中考语文试卷记叙文阅读题及答案)
- 《ISO56001-2024创新管理体系 - 要求》之22:“8运行-8.2 创新行动”解读和应用指导材料(雷泽佳编制-2024)
- 广东省中山市2023-2024学年高三物理上学期第五次统测试题含解析
- 《体育科学研究方法》题库
- 高级会计实务案例分析-第三章 企业全面预算管理
- DL∕T 5142-2012 火力发电厂除灰设计技术规程
- 城域网建设方案
评论
0/150
提交评论