版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西两校2025届高一上数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一半径为2m的水轮,水轮圆心O距离水面1m;已知水轮按逆时针做匀速转动,每3秒转一圈,且当水轮上点P从水中浮现时(图中点)开始计算时间.如图所示,建立直角坐标系,将点P距离水面的高度h(单位:m)表示为时间t(单位:s)的函数,记,则()A.0 B.1C.3 D.42.对,不等式恒成立,则a的取值范围是()A. B.C.或 D.或3.设,则()A. B.C. D.4.若角(0≤≤2π)的终边过点,则=(
)A. B.C. D.5.若直线与直线垂直,则()A.6 B.4C. D.6.设,给出下列四个结论:①;②;③;④.其中所有的正确结论的序号是A.①② B.②③C.①②③ D.②③④7.若集合,,则()A. B.C. D.8.已知函数,是函数的一个零点,且是其图象的一条对称轴.若是的一个单调区间,则的最大值为A.18 B.17C.15 D.139.已知函数,且在上的最大值为,若函数有四个不同的零点,则实数a的取值范围为()A. B.C. D.10.设奇函数f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式<0的解集为()A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)二、填空题:本大题共6小题,每小题5分,共30分。11.已知,均为正数,且,则的最大值为____,的最小值为____.12.函数的定义域为__________.13.已知函数,若方程有四个不同的实根,满足,则值为__________.14.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________15.已知,则____________16.已知向量满足,且,则与的夹角为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)一个半径为的扇形,若它的周长等于,那么扇形的圆心角是多少弧度?扇形面积是多少?(2)角的终边经过点P(,4)且cos=,则的值18.如图,平面,,,,分别为的中点.(I)证明:平面;(II)求与平面所成角的正弦值.19.已知动圆经过点和(1)当圆面积最小时,求圆的方程;(2)若圆的圆心在直线上,求圆的方程.20.已知函数.(1)判断在上的单调性,并证明你的结论;(2)是否存在,使得是奇函数?若存在,求出所有的值;若不存在,请说明理由.21.已知偶函数.(1)求实数的值;(2)经过研究可知,函数在区间上单调递减,求满足条件的实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据题意设h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,写出函数解析式,计算f(t)+f(t+1)+f(t+2)的值【详解】根据题意,设h=f(t)=Asin(ωt+φ)+k,(φ<0),则A=2,k=1,因为T=3,所以ω,所以h=2sin(t+φ)+1,又因为t=0时,h=0,所以0=2sinφ+1,所以sinφ,又因为φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故选:C2、A【解析】对讨论,结合二次函数的图象与性质,解不等式即可得到的取值范围.【详解】不等式对一切恒成立,当,即时,恒成立,满足题意;当时,要使不等式恒成立,需,即有,解得.综上可得,的取值范围为.故选:A.3、A【解析】利用中间量隔开三个值即可.【详解】∵,∴,又,∴,故选:A【点睛】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.4、D【解析】由题意可得:,由可知点位于第一象限,则.据此可得:.本题选择D选项.5、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.6、B【解析】因为,所以①为增函数,故=1,故错误②函数为减函数,故,所以正确③函数为增函数,故,故,故正确④函数为增函数,,故,故错误点睛:结合指数函数、对数函数、幂函数单调性可以逐一分析得出四个结论的真假性.7、A【解析】解一元二次不等式化简集合B,再利用交集的定义直接计算作答.【详解】解不等式,即,解得,则,而,所以.故选:A8、D【解析】由已知可得,结合,得到(),再由是的一个单调区间,可得T,即,进一步得到,然后对逐一取值,分类求解得答案【详解】由题意,得,∴,又,∴()∵是一个单调区间,∴T,即,∵,∴,即①当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;②当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;③当,即时,,,∴,∵,∴,此时在上单调递增,∴符合题意,故选D【点睛】本题主要考查正弦型函数的单调性,对周期的影响,零点与对称轴之间的距离与周期的关系,考查分类讨论的数学思想方法,考查逻辑思维能力与推理运算能力,结合选项逐步对系数进行讨论是解决该题的关键,属于中档题.9、B【解析】由在上最大值为,讨论可求出,从而,若有4个零点,则函数与有4个交点,画出图象,结合图象求解即可【详解】若,则函数在上单调递增,所以的最小值为,不合题意,则,要使函数在上的最大值为如果,即,则,解得,不合题意;若,即,则解得即,则如图所示,若有4个零点,则函数与有4个交点,只有函数的图象开口向上,即当与)有一个交点时,方程有一个根,得,此时函数有二个不同的零点,要使函数有四个不同的零点,与有两个交点,则抛物线的图象开口要比的图象开口大,可得,所以,即实数a的取值范围为故选:B【点睛】关键点点睛:此题考查函数与方程的综合应用,考查二次函数的性质的应用,考查数形结合的思想,解题的关键是由已知条件求出的值,然后将问题转化为函数与有4个交点,画出函数图象,结合图象求解即可,属于较难题10、C【解析】利用函数奇偶性,等价转化目标不等式,再结合已知条件以及函数单调性,即可求得不等式解集.【详解】∵f(x)为奇函数,故可得,则<0等价于.∵f(x)在(0,+∞)上为减函数且f(1)=0,∴当x>1时,f(x)<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f(x)为减函数且f(-1)=0,即x<-1时,f(x)>0.综上使<0的解集为(-∞,-1)∪(1,+∞)故选:.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.##【解析】利用基本不等式的性质即可求出最大值,再通过消元转化为二次函数求最值即可.【详解】解:由题意,得4=2a+b≥2,当且仅当2a=b,即a=1,b=2时等号成立,所以0<ab≤2,所以ab的最大值为2,a2+b2=a2+(4-2a)2=5a2-16a+16=5(a-)2+≥,当a=,b=时取等号.故答案为:,.12、【解析】解不等式即可得出函数的定义域.【详解】对于函数,有,解得.因此,函数的定义域为.故答案为:.13、11【解析】画出函数图像,利用对数运算及二次函数的对称性可得答案.【详解】函数的图像如图:若方程有四个不同的实根,满足,则必有,得,.故答案为:11.14、0【解析】由于正三角形的内角都为,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为,则斜率为,则边AC所在直线的倾斜角为,斜率为,所以AC,AB所在直线的斜率之和为15、##0.8【解析】利用同角三角函数的基本关系,将弦化切再代入求值【详解】解:,则,故答案为:16、##【解析】根据平面向量的夹角公式即可求出【详解】设与的夹角为,由夹角余弦公式,解得故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)设弧长为,所对圆心角为,则=,即=因为所以的弧度数是,从而(2)角的终边经过点P(,4),所以,所以.所以原式=18、(Ⅰ)略(Ⅱ)【解析】(I)证明:连接,在中,分别是的中点,所以,又,所以,又平面ACD,DC平面ACD,所以平面ACD(Ⅱ)在中,,所以而DC平面ABC,,所以平面ABC而平面ABE,所以平面ABE平面ABC,所以平面ABE由(Ⅰ)知四边形DCQP是平行四边形,所以所以平面ABE,所以直线AD在平面ABE内的射影是AP,所以直线AD与平面ABE所成角是在中,,所以考点:线面平行的判定定理;线面角点评:本题主要考查了空间中直线与平面所成的角,属立体几何中的常考题型,较难.本题也可以用向量法来做.而对于利用向量法求线面角关键是正确写出点的坐标和求解平面的一个法向量.注意计算要仔细、认真19、(1)(2)【解析】(1)以为直径的圆即为面积最小的圆,由此可以算出中点坐标和长度,即可求出圆的方程;(2)设出圆的标准方程,根据题意代入数值解方程组即可.【小问1详解】要使圆的面积最小,则为圆的直径,圆心,半径所以所求圆的方程为:.【小问2详解】设所求圆的方程为,根据已知条件得,所以所求圆的方程为.20、(1)减函数,证明见解析;(2),理由见解析【解析】(1)由单调性定义判断;(2)根据奇函数的性质由求得,然后再由奇函数定义验证【详解】(1)是上的减函数设,则,所以,,即,,所以,所以是上的减函数(2)若是奇函数,则,,时,,所以,所以为奇函数所以时,函数为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 砂石料供应合同20243篇
- 2024年房地产抵押借款合同3篇
- 2024事业单位员工聘用劳动合同
- 2024年个人劳务承包细则合同一
- 2024年大数据分析服务合同规定3篇
- 房屋买卖合同中的装修标准2024年规定2篇
- 二零二四年度房地产广告片制作技术培训合同
- 房屋产权转让及过户合同20243篇
- 2024年专业木工工程承包详细合同一
- 2024年度智能家居产品销售合同(2024版)2篇
- 乡村防灾减灾救灾知识讲座
- 高中物理《光学》练习题(附答案解析)
- 2024年中国大地保险公司招聘笔试参考题库含答案解析
- Thoughtworks 软件质量体系白皮书 2023
- 专项施工方案专家论证表格
- 2023年重庆市高考思想政治试卷真题(含答案)
- 米兰大教堂完整版本
- 牛津译林版英语八年级上册Unit6Reading课件
- 《我爱宁波》四年级教材说明
- 职工运动会羽毛球赛秩序册
- JGJ114-2014 钢筋焊接网混凝土结构技术规程
评论
0/150
提交评论