2025年中考数学二轮复习《方程实际问题》专题巩固练习四(含答案)_第1页
2025年中考数学二轮复习《方程实际问题》专题巩固练习四(含答案)_第2页
2025年中考数学二轮复习《方程实际问题》专题巩固练习四(含答案)_第3页
2025年中考数学二轮复习《方程实际问题》专题巩固练习四(含答案)_第4页
2025年中考数学二轮复习《方程实际问题》专题巩固练习四(含答案)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年中考数学二轮复习《方程实际问题》专题巩固练习四一 、选择题LISTNUMOutlineDefault\l3一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2B.x+1=(15﹣x)﹣2C.x﹣1=(30﹣x)+2D.x﹣1=(15﹣x)+2LISTNUMOutlineDefault\l3《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A. B.C. D.LISTNUMOutlineDefault\l3现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15

B.﹣=15C.﹣=20

D.﹣=20LISTNUMOutlineDefault\l3学校要组织一次篮球赛,赛制为单循环制(每两个班之间都赛一场),计划安排15场比赛.设参加球赛的班级有x个,所列方程正确的为(

)A.x(x-1)=15

B.x(x+1)=15

C.x(x-1)=2×15

D.x(x+1)=2×15二 、填空题LISTNUMOutlineDefault\l3七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为.LISTNUMOutlineDefault\l3《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为

.LISTNUMOutlineDefault\l3某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价元出售该商品.LISTNUMOutlineDefault\l3某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x,根据题意可列方程为________________.三 、解答题LISTNUMOutlineDefault\l3春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.求甲、乙两种商品每件的进价分别是多少元?LISTNUMOutlineDefault\l3某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.

(1)这项工程的规定时间是多少天?

(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?LISTNUMOutlineDefault\l3某中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)中学决定购买以上两种地球仪共30个,总费用不超过960元,那么中学最多可以购买多少个大地球仪?LISTNUMOutlineDefault\l3市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?LISTNUMOutlineDefault\l3建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?LISTNUMOutlineDefault\l3甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?LISTNUMOutlineDefault\l3甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价.已知该商品现价为每件32.4元,(1)若该商场两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?

LISTNUMOutlineDefault\l3\s0答案LISTNUMOutlineDefault\l3DLISTNUMOutlineDefault\l3ALISTNUMOutlineDefault\l3A.LISTNUMOutlineDefault\l3CLISTNUMOutlineDefault\l3答案为:2x+56=589﹣x.LISTNUMOutlineDefault\l3答案为:.LISTNUMOutlineDefault\l3答案为:6.LISTNUMOutlineDefault\l3答案为:10(1+x)2=13LISTNUMOutlineDefault\l3解:设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.LISTNUMOutlineDefault\l3解:(1)设这项工程的规定时间是x天,根据题意得:

(+)×15+=1.解得:x=30.

经检验x=30是原分式方程的解.

答:这项工程的规定时间是30天.

(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),

则该工程施工费用是:22.5×(6500+3500)=225000(元).

答:该工程的费用为225000元.LISTNUMOutlineDefault\l3解:(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:x+3y=1362x+y=132,解得:x=52答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a台,则每个小地球仪为(30﹣a)台,根据题意可得:52a+28(30﹣a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.LISTNUMOutlineDefault\l3解:(1)设平均每次下调的百分率为x,则6000(1-x)2=4860,解得:x1=0.1=10%,x2=1.9(舍).故平均每周下调的百分率为10%.(2)方案1优惠:4860×100×(1-0.98)=9720(元);方案2可优惠:80×100=8000(元).故方案1优惠.LISTNUMOutlineDefault\l3解:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,由题意得:,解得,答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元;﹙2﹚设新建m个地上停车位,则:10<0.1m+0.4(50﹣m)≤11,解得30≤m<,因为m为整数,所以m=30或m=31或m=32或m=33,对应的50﹣m=20或50﹣m=19或50﹣m=18或50﹣m=17,答:有4种建造方案;﹙3﹚当地上停车位=30时,地下=20,30×100+20×300=9000.用掉3600,剩余9000﹣3600=5400.因为修建一个地上停车位的费用是1000,一个地下是4000.5400不能凑成整数,所以不符合题意.同理得:当地上停车位=31,33时.均不能凑成整数.当算到地上停车位=32时,地下停车位=18,则32×100+18×300=8600,8600﹣3600=5000.此时可凑成修建1个地上停车场和一个地下停车位,1000+4000=5000.所以答案是32和18.答:建造方案是建造32个地上停车位,18个地下停车位.LISTNUMOutlineDefault\l3解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论