版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省吉林市蛟河市蛟河一中高二数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数x,y满足约束条件,则的最大值为()A. B.0C.3 D.52.已知数列的前n项和为,,,则()A. B.C. D.3.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于54.已知等比数列的公比为,则“是递增数列”的一个充分条件是()A. B.C. D.5.函数y=的最大值为Ae-1 B.eC.e2 D.6.已知数列是各项均为正数的等比数列,若,则公比()A. B.2C.2或 D.47.从集合{2,3,4,5}中随机抽取一个数m,从集合{1,3,5}中随机抽取一个数n,则向量=(m,n)与向量=(1,-1)垂直的概率为()A. B.C. D.8.已知直线与直线平行,则实数a的值为()A.1 B.C.1或 D.9.若a,b,c为实数,且,则以下不等式成立的是()A. B.C. D.10.在中,角A,B,C所对的边分别为a,b,c,,则的形状为()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形11.方程表示的曲线为焦点在y轴上的椭圆,则k的取值范围是()A. B.C.或 D.12.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆,若圆的过点的三条弦的长,,构成等差数列,则该数列的公差的最大值是______.14.如图,已知与所在平面垂直,且,,,点P、Q分别在线段BD、CD上,沿直线PQ将向上翻折,使D与A重合.则直线AP与平面ACQ所成角的正弦值为______15.若斜率为的直线与椭圆交于,两点,且的中点坐标为,则___________.16.等差数列前3项的和为30,前6项的和为100,则它的前9项的和为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题p:函数有零点;命题,(1)若命题p,q均为真命题,求实数a的取值范围;(2)若为真命题,为假命题,求实数a的取值范围18.(12分)已知定圆,过的一条动直线与圆相交于、两点,(1)当与定直线垂直时,求出与的交点的坐标,并证明过圆心;(2)当时,求直线的方程19.(12分)如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且,,,(1)求证:;(2)求直线与平面所成角的正弦值;(3)线段上是否存在点,使得直线平面?若存在,求的值;若不存在,请说明理由20.(12分)设椭圆的左、右焦点分别为,.点满足.(1)求椭圆的离心率;(2)设直线与椭圆相交于,两点,若直线与圆相交于,两点,且,求椭圆的方程.21.(12分)设或,(1)若时,p是q的什么条件?(2)若p是q的必要不充分条件,求a的取值范围22.(10分)如图,在四棱锥中,为平行四边形,,平面,且,点是的中点.(1)求证:平面;(2)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先画出可行域,由,得,作出直线,向上平移过点A时,取得最大值,求出点A的坐标,代入可求得结果【详解】不等式组表示的可行域,如图所示由,得,作出直线,向上平移过点A时,取得最大值,由,得,即,所以的最大值为,故选:D2、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D3、B【解析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题4、D【解析】由等比数列满足递增数列,可进行和两项关系的比较,从而确定和的大小关系.【详解】由等比数列是递增数列,若,则,得;若,则,得;所以等比数列是递增数列,或,;故等比数列是递增数列是递增数列的一个充分条件为,.故选:D.5、A【解析】,所以函数在上递增,在上递减,所以函数的最大值为时,y==故选A点睛:研究函数最值主要根据导数研究函数的单调性,找到最值,分式求导公式要记熟6、B【解析】由两式相除即可求公比.【详解】设等比数列的公比为q,∵其各项均为正数,故q>0,∵,∴,又∵,∴=4,则q=2.故选:B.7、A【解析】根据分步计数乘法原理求得所有的)共有12个,满足两个向量垂直的共有2个,利用古典概型公式可得结果.【详解】集合{2,3,4,5}中随机抽取一个数,有4种方法;从集合{1,3,5}中随机抽取一个数,有3种方法,所以,所有的共有个,由向量与向量垂直,可得,即,故满足向量与向量垂直的共有2个:,所以向量与向量垂直的概率为,故选A.【点睛】本题主要考查分步计数乘法原理的应用、向量垂直的性质以及古典概型概率公式的应用,属于中档题.在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.8、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A9、C【解析】利用不等式的性质直接推导和取值验证相结合可解.【详解】取可排除ABD;由不等式的性质易得C正确.故选:C10、C【解析】根据三角恒等变换结合正弦定理化简求得,即可判定三角形形状.【详解】解:由题,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形为直角三角形.故选:C.11、D【解析】根据曲线为焦点在y轴上的椭圆可得出答案.【详解】因为方程表示的曲线为焦点在y轴上的椭圆,所以,解得.故选:D.12、A【解析】如图:如图,取小圆上一点,连接并延长交大圆于点,连接,,则在小圆中,,在大圆中,,根据大圆的半径是小圆半径的倍,可知的中点是小圆转动一定角度后的圆心,且这个角度恰好是,综上可知小圆在大圆内壁上滚动,圆心转过角后的位置为点,小圆上的点,恰好滚动到大圆上的也就是此时的小圆与大圆的切点.而在小圆中,圆心角(是小圆与的交点)恰好等于,则,而点与点其实是同一个点在不同时刻的位置,则可知点与点是同一个点在不同时刻的位置.由于的任意性,可知点的轨迹是大圆水平的这条直径.类似的可知点的轨迹是大圆竖直的这条直径.故选A.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据题意,求得过点的直线截圆所得弦长的最大值和最小值,即可求得公差的最大值.【详解】圆的圆心,半径,设点为点,因为,故点在圆内,当直线过点,且经过圆心时,该直线截圆所得弦长取得最大值;当直线过点,且与直线垂直时,该直线截圆所得弦长取得最小值,此时,则满足题意的直线为,即,又,则该直线截圆所得弦长为;根据题意,要使得数列的公差最大,则,故最大公差.故答案为:.14、##【解析】取的中点,的中点,以所在直线为轴,以所在直线为轴,以所在直线为轴,建立空间直角坐标系,设,根据求出,再由空间向量的数量积即可求解.【详解】取的中点,的中点,如图以所在直线为轴,以所在直线为轴,以所在直线为轴,建立空间直角坐标系,不妨设,则,,,由,即,解得,所以,故,设为平面ACQ的一个法向量,因为,,由,即,所以,设直线AP与平面ACQ所成角为,则.故答案为:15、-1【解析】根据给定条件设出点A,B的坐标,再借助“点差法”即可计算得解.【详解】依题意,线段的中点在椭圆C内,设,,由两式相减得:,而,于是得,即,所以.故答案为:16、210【解析】依题意,、、成等差数列,从而可求得答案【详解】∵等差数列{an}的前3项和为30,前6项和为100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差数列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【点睛】本题考查等差数列的性质,熟练利用、、成等差数列是关键,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据二次函数的性质求p为真时a的取值范围,根据的性质判断与有交点求q为真时a的取值范围,进而求p,q均为真时a的取值范围.(2)根据复合命题的真假可得p,q一真一假,讨论p、q的真假分别求a的取值范围,最后取并集即可.【小问1详解】若p为真,,解得或,所以若q为真,因为在上为增函数,所以,故,所以若p,q均为真命题,a的取值范围为【小问2详解】由题设,易知:p,q两命题一真一假当p真q假时,p为真,则或,q为假,则或,此时a的取值范围为;当p假q真时,p为假,则,q为真,则,此时a的取值范围为综上,实数a的取值范围为.18、(1),证明见解析;(2)或.【解析】(1)根据题意可设直线的方程为,将点的坐标代入直线的方程,可求得的值,再将直线、的方程联立,可得出这两条直线的交点的坐标,将圆心的坐标代入直线的方程可证得结论成立;(2)利用勾股定理可求得圆心到直线的距离,对直线的斜率是否存在进行分类讨论,设出直线方程,利用点到直线的距离公式求出参数的值,即可得出直线的方程.【小问1详解】解:当直线与定直线垂直时,可设直线的方程为,将点的坐标代入直线的方程可得,则,此时,直线的方程为,联立可得,即点,圆心的坐标为,因为,故直线过圆心.【小问2详解】解:设圆心到直线的距离为,则.当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,合乎题意;当直线的斜率存在时,可设直线的方程为,即,由题意可得,解得,此时直线的方程为,即.综上所述,直线的方程为或.19、(1)证明见解析(2)(3)存在点,使得平面,且【解析】(1)由面面垂直的性质可得平面,再由线面垂直的性质可证得结论,(2)可证得两两垂直,所以分别以为轴,轴,轴建立空间直角坐标系,利用空间向量求解,(3)设,然后利用空间向量求解【小问1详解】证明:因为为正方形,所以又因为平面平面,且平面平面,所以平面平面所以;【小问2详解】由(1)可知,平面,所以,因为,所以两两垂直分别以为轴,轴,轴建立空间直角坐标系(如图)因为,,所以,所以,设平面的一个法向量为,则,即令,则,;所以设直线与平面所成角为,则直线与平面所成角为的正弦值为;【小问3详解】设,易知设,则,所以,所以,所以设平面的一个法向量为,则,因为,所以令,则,所以在线段上存在点,使得平面等价于存在,使得因为,由,所以,解得,所以线段上存在点,使得平面,且20、(1);(2)【解析】(1)由及两点间距离公式可建立等式,消去b,即可求解出,主要两个根的的要舍去;(2)联立直线和椭圆的方程,利用弦长公式求得,再利用几何关系求得,代入,可解得c,从而得到椭圆的方程.【详解】(1)设,,因为,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得椭圆方程为,直线的方程为,A,B两点的坐标满足方程组为,消去y并整理,得,解得:,,得方程组的解和,不妨设:,,所以,于是,圆心到直线的距离为,因为,所以,整理得:,得(舍),或,所以椭圆方程为:.【点睛】关键点点睛:本题考查求椭圆的离心率解题关键是找到关于a,b,c的等量关系,第二问的关键是联立直线与椭圆方程求出交点坐标,利用距离公式建立等量关系,求出c是求出椭圆方程的关键.21、(1)充要条件;(2).【解析】(1)根据解一元二次不等式的方法,结合充分性、必要性的定义进行求解判断即可;(2)根据必要不充分条件的性质进行求解即可.【小问1详解】因为,所以,解得或,显然p是q的充要条件;【小问2详解】,当时,该不等式的解集为全体实数集,显然由,但不成立,因此p是q的充分不必要条件,不符合题意;当时,该不等式的解集为:,显然当时,不一定成立,因此p不是q的必要不充分条件,当时,该不等式解集为:,要想p是q的必要不充分条件,只需,而,所以,因此a的取值范围为:.22、(1)见解析(2)存在,【解析】(1)连接交于点,由三角形中位线性质知,由线面平行判定定理证得结论;(2)以为原点建立空间直角坐标系,假设,可用表示出点坐标;根据二面角的向量求法可根据二面角的余弦值构造出关于的方程,从而解得结果.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2006年江苏高考语文真题及答案
- 《焊工基础知识》课件
- 《客户的初次拜访》课件
- 语义网在病历应用-洞察分析
- 预训练模型发展-洞察分析
- 小数加密与解密-洞察分析
- 通信芯片技术创新-洞察分析
- 网络培训中心行业法规与政策研究-洞察分析
- 隐私保护的隐私设计原则-洞察分析
- 隐式知识图谱构建-洞察分析
- 人教版八年级上册生物全册教案(完整版)教学设计含教学反思
- 2024年银行考试-银行间本币市场交易员资格考试近5年真题附答案
- 人教版小学四年级数学上册期末复习解答题应用题大全50题及答案
- 冀教版五年级上册脱式计算题100道及答案
- 你是排长我是兵(2022年山东济南中考语文试卷记叙文阅读题及答案)
- 《ISO56001-2024创新管理体系 - 要求》之22:“8运行-8.2 创新行动”解读和应用指导材料(雷泽佳编制-2024)
- 广东省中山市2023-2024学年高三物理上学期第五次统测试题含解析
- 《体育科学研究方法》题库
- 高级会计实务案例分析-第三章 企业全面预算管理
- DL∕T 5142-2012 火力发电厂除灰设计技术规程
- 城域网建设方案
评论
0/150
提交评论