版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省西安市西工大附中高一数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的最大值与最小值的差为2,则()A.4 B.3C.2 D.2.不等式成立x的取值集合为()A. B.C. D.3.已知a,b∈(0,+∞),函数f(x)=alog2x+b的图象经过点(4,1)A.6-22 B.C.4+22 D.4.以,为基底表示为A. B.C. D.5.某人去上班,先跑步,后步行.如果y表示该人离单位的距离,x表示出发后的时间,那么下列图象中符合此人走法的是().A. B.C. D.6.已知集合,,则A. B.C. D.7.形如的函数因其图像类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数有最小值,则“囧函数”与函数的图像交点个数为()A.1 B.2C.4 D.68.已知a=1.50.2,b=log0.21.5,c=0.21.5,则()A.a>b>c B.b>c>aC.c>a>b D.a>c>b9.的外接圆的圆心为O,半径为1,若,且,则的面积为()A. B.C. D.110.函数fx=lgA.0 B.1C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.若,,,则的最小值为___________.12.如果对任意实数x总成立,那么a的取值范围是____________.13.一个几何体的三视图如图所示(单位:),则该几何体的体积为__________14.若,且α为第一象限角,则___________.15.函数在区间上的值域是_____.16.已知,且,则实数的取值范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知cos(−α)=,sin(+β)=−,α(,),β(,).(1)求sin2α的值;(2)求cos(α+β)的值.18.已知,且在第三象限,(1)和(2).19.已知函数.(1)当时,求的定义域;(2)若函数只有一个零点,求的取值范围.20.已知函数的部分图象如图所示.(1)求函数的解析式和单调增区间;(2)将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,若关于的方程在区间上有两个不同的解、,求的值及实数的取值范围.21.已知函数(Ⅰ)求函数的最小正周期(Ⅱ)求函数在上的最大值与最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据解析式可得其单调性,根据x的范围,可求得的最大值和最小值,根据题意,列出方程,即可求得a值.【详解】由题意得在上为单调递增函数,所以,,所以,解得,又,所以.故选:C2、B【解析】先求出时,不等式的解集,然后根据周期性即可得答案.【详解】解:不等式,当时,由可得,又最小正周期为,所以不等式成立的x的取值集合为.故选:B.3、D【解析】由函数f(x)=alog2x+b的图象经过点(4,1)得到2a+b=1【详解】因为函数f(x)=alog2x+b图象经过点(4,1),所以有alog24+b=1⇒2a+b=1,因为a,b∈(0,+∞),所以有(故选:D【点睛】本题考查了基本不等式的应用,用“1”巧乘是解题的关键,属于一般题.4、B【解析】设,利用向量相等可构造方程组,解方程组求得结果.【详解】设则本题正确选项:【点睛】本题考查平面向量基本定理的应用,关键是能够通过向量相等构造出方程组,属于基础题.5、D【解析】根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果【详解】解:由题意可知:时所走的路程为0,离单位的距离为最大值,排除A、C,随着时间的增加,先跑步,开始时随的变化快,后步行,则随的变化慢,所以适合的图象为D;故选:D6、C【解析】先写出A的补集,再根据交集运算求解即可.【详解】因为,所以,故选C.【点睛】本题主要考查了集合的补集,交集运算,属于容易题.7、C【解析】令,根据函数有最小值,可得,由此可画出“囧函数”与函数在同一坐标系内的图象,由图象分析可得结果.【详解】令,则函数有最小值∵,∴当函数是增函数时,在上有最小值,∴当函数是减函数时,在上无最小值,∴.此时“囧函数”与函数在同一坐标系内的图象如图所示,由图象可知,它们的图象的交点个数为4.【点睛】本题考查对数函数的性质和函数图象的应用,考查学生画图能力和数形结合的思想运用,属中档题.8、D【解析】由对数和指数函数的单调性比较大小即可.【详解】因为,所以故选:D9、B【解析】由,利用向量加法的几何意义得出△ABC是以A为直角的直角三角形,又|,从而可求|AC|,|AB|的值,利用三角形面积公式即可得解【详解】由于,由向量加法的几何意义,O为边BC中点,∵△ABC的外接圆的圆心为O,半径为1,∴三角形应该是以BC边为斜边的直角三角形,∠BAC=,斜边BC=2,又∵∴|AC|=1,|AB|=,∴S△ABC=,故选B.【点睛】本题主要考查了平面向量及应用,三角形面积的求法,属于基础题10、C【解析】在同一个坐标系下作出两个函数的图象即得解.【详解】解:在同一个坐标系下作出两个函数的图象如图所示,则交点个数为为2.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】利用基本不等式常值代换即可求解.【详解】因为,,,所以,当且仅当,即时,等号成立,所以的最小值为3,故答案为:312、【解析】先利用绝对值三角不等式求出的最小值,进而求出a的取值范围.【详解】,当且仅当时等号成立,故,所以a的取值范围是.故答案为:13、【解析】几何体为一个圆锥与一个棱柱的组合体,体积为14、【解析】先求得,进而可得结果.【详解】因为,又为第一象限角,所以,,故.故答案为:.15、【解析】结合的单调性求得正确答案.【详解】根据复合函数单调性同增异减可知:在区间上递增,最小值为,最大值为,所以函数在区间上的值域是.故答案为:16、【解析】,该函数的定义域为,又,故为上的奇函数,所以等价于,又为上的单调减函数,,也即是,解得,填点睛:解函数不等式时,要注意挖掘函数的奇偶性和单调性三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用可以快速得到sin2α的值;(2)以“组配角”去求cos(α+β)的值简单快捷.【小问1详解】∵,∴,∴,∴【小问2详解】,,,则又,,则故18、(1),(2)【解析】(1)利用同角三角函数关系求解即可.(2)利用同角三角函数关系和诱导公式求解即可.【小问1详解】已知,且在第三象限,所以,【小问2详解】原式19、(1);(2)【解析】(1)当时,求的解析式,令真数位置大于,解不等式即可求解;(2)由题意可得,整理可得只有一解,分别讨论,时是否符合题意,再分别讨论和有且只有一个是方程①的解,结合定义域列不等式即可求解.【小问1详解】当时,,由,即,因为,所以.故的定义域为.【小问2详解】因为函数只有一个零点,所以关于的方程①的解集中只有一个元素.由,可得,即,所以②,当时,,无意义不符合题意,当,即时,方程②的解为.由(1)得的定义域为,不在的定义域内,不符合题意.当是方程①的解,且不是方程①的解时,解得:,当是方程①的解,且不是方程①的解时,解得:且,无解.综上所述:的取值范围是.20、(1),增区间为;(2),.【解析】(1)结合图象和,求得的值,再根据,,求得的解析式,然后利用正弦函数的单调性,即可得解;(2)根据函数图象的变换法则写出的解析式,再结合正弦函数的对称性以及图象,即可得解.【小问1详解】解:设的最小正周期为,由图象可知,则,故,又,所以,即,所以,所以,因为,所以,所以,所以,所以,令,则,故的单调增区间为.【小问2详解】解:将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的倍(纵坐标不变),得的图象,由,知,由可得,由可得,若关于的方程在区间上有两个不同的解、,则点、关于直线对称,故,所以,,作出函数与函数在区间上的图象如下图所示:由图可知,当时,即当时,函数与函数在区间上的图象有两个交点.综上所述,,实数的取值范围是.21、(1)(2)最大值1,最小值0【解析】(1)先利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电路分析基础》课程教学大纲
- 《公务员制度》课程教学大纲
- 2024年出售旧养牛棚合同范本
- 2024年代耕代种协议书模板范本
- 《餐饮服务与管理》高教版(第二版)5.4中餐宴会服务单元练习卷(解析版)
- 华西护理管理
- 2024年超高压电缆连接件项目成效分析报告
- 2024至2030年中国迷你榨汁机数据监测研究报告
- 2023年放射性核素遥控后装机项目评估分析报告
- 2023年掺铊碘化铯闪烁晶体(CSL(TL))项目成效分析报告
- 高考倒计时 二百天大有可为-高三冲刺班会
- 2023年中国邮政集团有限公司贵州省分公司招聘考试真题
- 江苏大学《模拟电子技术B》2022-2023学年第一学期期末试卷
- 第3讲 决策课件
- 品管部年终总结报告
- 吉林师范大学《复变函数与积分变换》2021-2022学年第一学期期末试卷
- 传染病实验室检查的质量控制
- 广东开放大学2024年秋《国家安全概论(S)(本专)》形成性考核作业参考答案
- 2024时事政治考试题库(基础题)
- 《学会专注高效学习》初中主题班会课件
- 律师谈案技巧培训课件
评论
0/150
提交评论