2025届北京市西城区第14中学数学高一上期末综合测试模拟试题含解析_第1页
2025届北京市西城区第14中学数学高一上期末综合测试模拟试题含解析_第2页
2025届北京市西城区第14中学数学高一上期末综合测试模拟试题含解析_第3页
2025届北京市西城区第14中学数学高一上期末综合测试模拟试题含解析_第4页
2025届北京市西城区第14中学数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市西城区第14中学数学高一上期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,,若,则A. B.C. D.2.如图,AB是⊙O直径,C是圆周上不同于A、B的任意一点,PA与平面ABC垂直,则四面体P_ABC的四个面中,直角三角形的个数有()A.4个 B.3个C.1个 D.2个3.已知函数,若正数,,满足,则()A.B.C.D.4.若一个三角形采用斜二测画法作直观图,则其直观图的面积是原来三角形面积的()倍.A B.C. D.25.实数,,的大小关系正确的是()A. B.C. D.6.下列有关命题的说法错误的是()A.的增区间为B.“”是“-4x+3=0”的充分不必要条件C.若集合中只有两个子集,则D.对于命题p:.存在,使得,则p:任意,均有7.已知直线与直线平行,则的值为A.1 B.-1C.0 D.-1或18.已知幂函数为偶函数,则实数的值为()A.3 B.2C.1 D.1或29.若集合,则()A. B.C. D.10.下列函数中,既是偶函数又在区间0,+∞A.y=-x2C.y=x3二、填空题:本大题共6小题,每小题5分,共30分。11.当时,函数的最大值为________.12.已知函数是定义在上的奇函数,当时,,则__________.13.已知,,则ab=_____________.14.已知函数的图象如图所示,则函数的解析式为__________.15.写出一个最小正周期为2的奇函数________16.下列命题中所有正确的序号是______________①函数最小值为4;②函数的定义域是,则函数的定义域为;③若,则的取值范围是;④若(,),则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在R上的奇函数,且当时,,现已画出函数f(x)在y轴左侧的图象,如图所示(1)请补出函数,剩余部分的图象,并根据图象写出函数,的单调增区间;(2)求函数,的解析式;(3)已知关于x的方程有三个不相等的实数根,求实数的取值范围18.已知函数=的部分图象如图所示(1)求的值;(2)求的单调增区间;(3)求在区间上的最大值和最小值19.已知函数为的零点,为图象的对称轴(1)若在内有且仅有6个零点,求;(2)若在上单调,求的最大值20.化简下列各式:(1);(2).21.刘先生购买了一部手机,欲使用某通讯网络最近推出的全年免流量费用的套餐,经调查收费标准如下表:套餐月租本地话费长途话费套餐甲12元0.3元/分钟0.6元/分钟套餐乙无0.5元/分钟0.8元/分钟刘先生每月接打本地电话时间是长途电话的5倍(手机双向收费,接打话费相同)(1)设刘先生每月通话时间为x分钟,求使用套餐甲所需话费的函数及使用套餐乙所需话费的函数;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用两个集合的交集所包含的元素,求得的值,进而求得.【详解】由于,故,所以,故,故选A.【点睛】本小题主要考查两个集合交集元素的特征,考查两个集合的并集的概念,属于基础题.2、A【解析】AB是圆O的直径,可得出三角形是直角三角形,由圆O所在的平面,根据线垂直于面性质得出三角形和三角形是直角三角形,同理可得三角形是直角三角形.【详解】∵AB是圆O的直径,∴∠ACB=,即,三角形是直角三角形.又∵圆O所在的平面,∴三角形和三角形是直角三角形,且BC在此平面中,∴平面,∴三角形是直角三角形.综上,三角形,三角形,三角形,三角形.直角三角形数量为4.故选:A.【点睛】考查线面垂直的判定定理和应用,知识点较为基础.需多理解.难度一般.3、B【解析】首先判断函数在上单调递增;然后根据,同时结合函数的单调性及放缩法即可证明选项B;通过举例说明可判断选项A,C,D.【详解】因为,所以函数在上单调递增;因为,,,均为正数,所以,又,所以,所以,所以,又因为,所以,选项B正确;当时,满足,但不满足,故选项A错误;当时,满足,但此时,不满足,故选项C错误;当时,满足,但此时,不满足,故选项D错误.故选:B.4、A【解析】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三角形的高变为原来的,故直观图中三角形面积是原三角形面积的.故选:A.【点睛】本题考查平面图形的直观图,由斜二测画法看三角形底边长和高的变化即可,属于基础题.5、B【解析】根据指数函数、对数函数的单调性分别判断的取值范围,即可得结果.【详解】由对数函数的单调性可得,根据指数函数的单调性可得,即,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6、C【解析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程有一根判断;D.由命题p的否定为全称量词命题判断.【详解】A.令,由,解得,由二次函数的性质知:t在上递增,在上递减,又在上递增,由复合函数的单调性知:在上递增,故正确;B.当时,-4x+3=0成立,故充分,当-4x+3=0成立时,解得或,故不必要,故正确;C.若集合中只有两个子集,则集合只有一个元素,即方程有一根,当时,,当时,,解得,所以或,故错误;D.因为命题p:.存在,使得存在量词命题,则其否定为全称量词命题,即p任意,均有,故正确;故选:C7、A【解析】由于直线l1:ax+y-1=0与直线l2:x+ay+=0平行所以,即-1或1,经检验成立.故选A.8、C【解析】由题意利用幂函数的定义和性质,得出结论【详解】幂函数为偶函数,,且为偶数,则实数,故选:C9、C【解析】根据交集定义即可求出.【详解】因为,所以.故选:C.10、A【解析】根据基本函数的性质和偶函数的定义分析判断即可【详解】对于A,因为f(x)=-(-x)2=-x2=f(x),所以y=-x2是偶函数,对于B,y=2x是非奇非偶函数,所以对于C,因为f(-x)=(-x)3=-x3对于D,y=lnx=lnx,x>0故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分子分母同除以,再利用基本不等式求解即可.【详解】,,当且仅当时取等号,即函数的最大值为,故答案为:.12、12【解析】由函数的奇偶性可知,代入函数解析式即可求出结果.【详解】函数是定义在上的奇函数,,则,.【点睛】本题主要考查函数的奇偶性,属于基础题型.13、1【解析】将化成对数形式,再根据对数换底公式可求ab的值.【详解】,.故答案为:1.14、【解析】根据最大值得,再由图像得周期,从而得,根据时,取得最大值,利用整体法代入列式求解,再结合的取值范围可得.【详解】根据图像的最大值可知,,由,可得,所以,再由得,,所以,因为,所以,故函数的解析式为.故答案为:.15、【解析】根据奇函数性质可考虑正弦型函数,,再利用周期计算,选择一个作答即可.【详解】由最小正周期为2,可考虑三角函数中的正弦型函数,,满足,即是奇函数;根据最小正周期,可得.故函数可以是中任一个,可取.故答案为:.16、③④【解析】利用基本不等式可判断①正误;利用抽象函数的定义域可判断②的正误;解对数不等式可判断③;构造函数,函数在上单调递减,结合,求得可判断④.详解】对于①,当时,,由基本不等式可得,当且仅当时,即当时,等号成立,但,故等号不成立,所以,函数,的最小值不是,①错误;对于②,若函数的定义域为,则有,解得,即函数的定义域为,②错误;对于③,若,所以当时,解得:,不满足;当时,解得:,所以的取值范围是,③正确;对于④,令,函数在上单调递减,由得,则,即,故④正确.故答案为:③④.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)图象见解析,函数的单调增区间为;(2);(3).【解析】(1)根据奇函数的图象特征即可画出右半部分的图象,结合图象,即可得出单调增区间;(2)根据函数的奇偶性即可直接求出函数的解析式;(3)由(2)得出函数的解析式,画出函数图象,利用数形结合的数学思想即可得出m的取值范围.【小问1详解】剩余的图象如图所示,有图可知,函数的单调增区间为;【小问2详解】因为当时,,所以当时,则,有,由为奇函数,得,即当时,,又,所以函数的解析式为;【小问3详解】由(2)得,,作出函数与图象,如图,由图可知,当时,函数与图象有3个交点,即方程有3个不等的实根.所以m的取值范围为.18、(1);(2)单调递增区间为(3)时,取得最大值1;时,f(x)取得最小值【解析】(1)利用图象的最高点和最低点的纵坐标确定振幅,由相邻对称轴间的距离确定函数的周期和值;(2)利用正弦函数的单调性和整体思想进行求解;(3)利用三角函数的单调性和最值进行求解试题解析:(1)由图象知由图象得函数最小正周期为=,则由=得(2)令..所以f(x)的单调递增区间为(3)..当即时,取得最大值1;当即时,f(x)取得最小值19、(1);(2).【解析】(1)根据的零点和对称中心确定出的取值情况,再根据在上的零点个数确定出,由此确定出的取值,结合求解出的取值,再根据以及的范围确定出的取值,由此求解出的解析式;(2)先根据在上单调确定出的范围,由此确定出的可取值,再对从大到小进行分析,由此确定出的最大值.【详解】(1)因为是的零点,为图象的对称轴,所以,所以,因为在内有且仅有个零点,分析正弦函数函数图象可知:个零点对应的最短区间长度为,最长的区间长度小于,所以,所以,所以,所以,所以,所以,所以,代入,所以,所以,所以,又因为,所以,所以;(2)因为在上单调,所以,即,所以,又由(1)可知,所以,所以,当时,,所以,所以,所以此时,因为,所以,又因为在时显然不单调所以在上不单调,不符合;当时,,所以,所以,所以此时,因为,所以,又因为在时显然单调递减,所以在上单调递减,符合;综上可知,的最大值为.【点睛】思路点睛:求解动态的三角函数涉及的取值范围问题的常见突破点:(1)结论突破:任意对称轴(对称中心)之间的距离为,任意对称轴与对称中心之间的距离为;(2)运算突破:已知在区间内单调,则有且;已知在区间内没有零点,则有且.20、(1)0(2)1【解析】(1)由诱导公式化简计算;(2)由诱导公式化简即可得解【小问1详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论