版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省靖远一中高一上数学期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则与终边相同的角的集合为A. B.C. D.2.定义在上的函数,当时,,若,则、、的大小关系为()A. B.C. D.3.已知某扇形的面积为,圆心角为,则该扇形的半径为()A.3 B.C.9 D.4.已知函数,若存在R,使得不等式成立,则实数的取值范围为()A. B.C. D.5.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的体积为A.B.C.D.6.已知函数(),对于给定的一个实数,点的坐标可能是()A.(2,1) B.(2,-2)C.(2,-1) D.(2,0)7.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.248.如图,在矩形中,是两条对角线的交点,则A. B.C. D.9.已知函数是定义在上的奇函数,在区间上单调递增.若实数满足,则实数的取值范围是A B.C. D.10.,,,则的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是___________.12.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________.13.的定义域为_________;若,则_____14.已知函数,则函数的所有零点之和为________15.已知角的终边过点(1,-2),则________16.化简___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,函数.(1)当时,写出的单调区间(不用写出求解过程);(2)若有两个零点,求的取值范围.18.已知函数.(1)求函数的最小正周期和单调递增区间;(2)若当时,求的最大值和最小值及相应的取值.19.已知函数.(1)求的值;你能发现与有什么关系?写出你的发现并加以证明:(2)试判断在区间上的单调性,并用单调性的定义证明.20.已知函数.(1)求函数的最小正周期及函数的对称轴方程;(2)若,求函数的单调区间和值域.21.已知全集,集合,集合(1)求集合及;(2)若集合,且,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由终边相同的角的概念,可直接得出结果.【详解】因为,所以与终边相同的角为.故选B【点睛】本题主要考查终边相同的角,熟记概念即可得出结果,属于基础题型.2、C【解析】令,求得,得到是奇函数,再令,证得在上递减判断.【详解】因为,令,得,解得,令,得,所以是奇函数,因时,,则,,令,则,,且,则,,所以,即,即,所以在上递减,,因为,所以,故选:C3、A【解析】根据扇形面积公式求出半径.【详解】扇形的面积,解得:故选:A4、D【解析】利用函数的奇偶性与单调性把函数不等式变形,然后由分离参数法转化为求函数的最值【详解】是奇函数,且在上是增函数,因此不等式可化为,所以,,由得的最小值是2,所以故选:D5、A【解析】设球的半径为R,根据已知条件得出正方体上底面截球所得截面圆的半径为2cm,球心到截面圆圆心的距离为,再利用球的性质,求得球的半径,最后利用球体体积公式,即可得出答案【详解】设球的半径为R,设正方体上底面截球所得截面圆恰好为上底面正方形的内切圆,该圆的半径为,且该截面圆圆心到水面的距离为1cm,即球心到截面圆圆心的距离为,由勾股定理可得,解得,因此,球的体积为故选A【点睛】本题主要考查了球体的体积的计算问题,解决本题的关键在于利用几何体的结构特征和球的性质,求出球体的半径,着重考查了空间想象能力,以及推理与计算能力,属于基础题6、D【解析】直接代入,利用为奇函数的性质,得到整体的和为定值.【详解】易知是奇函数,则即的横坐标与纵坐标之和为定值2.故选:D.7、A【解析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A8、B【解析】利用向量加减法的三角形法则即可求解.【详解】原式=,答案为B.【点睛】主要考查向量的加减法运算,属于基础题.9、C【解析】是定义在上的奇函数,在上单调递增,解得故选10、D【解析】根据对数函数的单调性得到,根据指数函数的单调性得到,根据正弦函数的单调性得到.【详解】易知,,因,函数在区间内单调递增,所以,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用根式、分式的性质求函数定义域即可.【详解】由解析式知:,则,可得,∴函数定义域为.故答案为:.12、9【解析】根据扇形的弧长是6,圆心角为2,先求得半径,再代入公式求解.【详解】因为扇形的弧长是6,圆心角为2,所以,所以扇形的面积为,故答案为:9.13、①.;②.3.【解析】空一:根据正切型函数的定义域进行求解即可;空二:根据两角和的正切公式进行求解即可.【详解】空一:由函数解析式可知:,所以该函数的定义域为:;空二:因为,所以.故答案为:;14、0【解析】令,得到,在同一坐标系中作出函数的图象,利用数形结合法求解.【详解】因为函数,所以的对称中心是,令,得,在同一坐标系中作出函数的图象,如图所示:由图象知:两个函数图象有8个交点,即函数有8个零点由对称性可知:零点之和为0,故答案为:015、【解析】由三角函数的定义以及诱导公式求解即可.【详解】的终边过点(1,-2),故答案为:16、【解析】利用向量的加法运算,即可得到答案;【详解】,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)增区间是,减区间是;(2)【解析】(1)根据函数的图象即可写出;(2)根据函数零点的定义结合分类讨论思想即可求出小问1详解】的增区间是,减区间是【小问2详解】由得;由得或,当时,得或,所以1是的零点,①当时,则都不是的零点,故只有一个零点;②当时,即时,为使有两个零点,则,解得,此时的两个零点为.当时,得,所以1不是的零点,为使有两个零点,则,解得,此时的两个零点为,所以.综上,当或时,即的取值范围为,有两个零点18、(1)最小正周期为,(2)最小值为-1,的值为,最大值为2,的值为【解析】(1)利用周期公式可得最小正周期,由的单调递增区间可得的单调递增区间;(2)由得,当,即时,函数取得最大值,当,即时,函数取得最小值可得答案.【小问1详解】函数的最小正周期为,令因为的单调递增区间是,由,解得,所以,函数的单调递增区间是.【小问2详解】令,因为,所以,即,当,即时,函数取得最大值,因此的最大值为,此时自变量的值为;当,即时,函数取得最小值,因此的最小值为,此时自变量的值为.19、(1),,与的关系:,证明见解析(2)在上单调递减,证明见解析【解析】(1)通过函数解析式计算出,通过计算证明.(2)通过来证得在区间上单调递减.【小问1详解】,.证明:..【小问2详解】在区间上递减.证明如下:且.在上单调递减.20、(1)最小正周期为,对称轴方程为(2)函数在上单调递减,在上单调递增;值域为【解析】(1)先通过降幂公式化简成,再按照周期和对称轴方程进行求解;(2)求出整体的范围,再结合正弦函数的单调性求解单调区间和值域.【小问1详解】;函数的最小正周期为,函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年小学五年级数学教学计划样本(六篇)
- 2024年厕所管理制度模版(三篇)
- 2024年国培个人研修计划书范本(四篇)
- 2024年工程审计工作的岗位职责描述范本(四篇)
- 2024年图书馆志愿者管理制度范文(二篇)
- 2024年学生会生活部工作计划例文(五篇)
- 2024年安全主管的职责范本(六篇)
- 2024年卫生院明年工作计划范例(二篇)
- 2024年小学班主任期末工作总结经典版(二篇)
- bain -2024年“双十一”:从AI中寻找新的增长点零售业需要思考六个问题
- 眼、淋巴结体格检查考核评分标准
- 肌电图震颤分析检测对帕金森病的诊断价值
- 船舶救生与消防培训课件
- DB31T 1249-2020 医疗废物卫生管理规范
- 中国建筑史说课市公开课金奖市赛课一等奖课件
- 3D-one熊猫的制作方法课件
- 人教版七年级上册数学一元一次方程的应用-古代数学问题
- 床单元消毒机-课件
- 工程暂停令-范本
- 中学干部教师队伍建设三年发展规划
- 关于女性员工职业生涯规划的制定
评论
0/150
提交评论