版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省兰州市甘肃一中2025届高一上数学期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B.C. D.2.若函数满足,则A. B.C. D.3.在平面直角坐标系中,设角的终边上任意一点的坐标是,它与原点的距离是,规定:比值叫做的正余混弦,记作.若,则()A. B.C. D.4.为了得到的图象,可以将的图象()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位5.函数,的最小值是()A. B.C. D.6.下列关系式中,正确的是A. B.C. D.7.下列四个选项中正确的是()A B.C. D.8.对任意正实数,不等式恒成立,则实数的取值范围是()A. B.C. D.9.设常数使方程在区间上恰有三个解且,则实数的值为()A. B.C. D.10.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是A.平面B.与是异面直线C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.漏斗作为中国传统器具而存在于日常生活之中,某漏斗有盖的三视图如图所示,其中俯视图为正方形,则该漏斗的容积为不考虑漏斗的厚度______,若该漏斗存在外接球,则______.12.第24届冬季奥林匹克运动会简称“北京—张家口冬奥会”,将于2022.2.4~2022.2.20在中华人民共和国北京市和张家口市联合举行.某公司为迎接冬奥会的到来,设计了一款扇形的纪念品,扇形圆心角为2,弧长为12cm,则扇形的面积为______.13.中,若,则角的取值集合为_________.14.已知函数的图象如图所示,则函数的解析式为__________.15.已知函数,,对任意,总存在使得成立,则实数a的取值范围是_________.16.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图像关于y轴对称(1)求k的值;(2)若此函数的图像在直线上方,求实数b的取值范围(提示:可考虑两者函数值的大小.)18.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?19.已知角的终边过点,且.(1)求的值;(2)求的值.20.已知函数,其中.(1)若对任意实数,恒有,求的取值范围;(2)是否存在实数,使得且?若存在,则求的取值范围;若不存在,则加以证明.21.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PCD⊥底面ABCD,且BC=2,,(1)证明:(2)若,求四棱锥的体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先还原几何体为一直四棱柱,再根据柱体体积公式求结果.【详解】根据三视图可得几何体为一个直四棱柱,高为,底面为直角梯形,上下底分别为、,梯形的高为,因此几何体的体积为,选C.【点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.2、A【解析】,所以,选A.3、D【解析】由可得出,根据题意得出,结合可得出关于和的方程组,解出这两个量,然后利用商数关系可求出的值.【详解】,则,由正余混弦的定义可得.则有,解得,因此,.故选:D.【点睛】本题考查三角函数的新定义,涉及同角三角函数基本关系的应用,根据题意建立方程组求解和的值是解题的关键,考查运算求解能力,属于基础题.4、A【解析】根据左加右减原则,只需将函数向左平移个单位可得到.【详解】,即向左平移个单位可得到.故选:A【点睛】本题考查正弦型函数的图像与性质,三角函数诱导公式,属于基础题.5、D【解析】利用基本不等式可求得的最小值.【详解】,当且仅当时,即当时,等号成立,故函数的最小值为.故选:D.6、C【解析】不含任何元素的集合称为空集,即为,而代表由单元素0组成的集合,所以,而与的关系应该是.故选C.7、D【解析】根据集合与集合关系及元素与集合的关系判断即可;【详解】解:对于A:,故A错误;对于B:,故B错误;对于C:,故C错误;对于D:,故D正确;故选:D8、C【解析】先根据不等式恒成立等价于,再根据基本不等式求出,即可求解.【详解】解:,即,即又当且仅当“”,即“”时等号成立,即,故.故选:C.9、B【解析】解:分别作出y=cosx,x∈(,3π)与y=m的图象,如图所示,结合图象可得则﹣1<m<0,故排除C,D,再分别令m=﹣,m=﹣,求出x1,x2,x3,验证x22=x1•x3是否成立;【详解】解:分别作出y=cosx,x∈(,3π)与y=m的图象,如图所示,方程cosx=m在区间(,3π)上恰有三个解x1,x2,x3(x1<x2<x3),则﹣1<m<0,故排除C,D,当m=﹣时,此时cosx=﹣在区间(,3π),解得x1=π,x2=π,x3=π,则x22=π2≠x1•x3=π2,故A错误,当m=﹣时,此时cosx=﹣在区间(,3π),解得x1=π,x2=π,x3=π,则x22=π2=x1•x3=π2,故B正确,故选B【点睛】本题考查了三角函数的图象和性质,考查了数形结合的思想和函数与方程的思想,属于中档题.10、D【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;对于C,A1C1,B1E是异面直线;故C错误;对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.0.5【解析】先将三视图还原几何体,然后利用长方体和锥体的体积公式求解容积即可;设该漏斗外接球的半径为,设球心为,利用,列式求解的值即可.【详解】由题中的三视图可得,原几何体如图所示,其中,,正四棱锥的高为,,,所以该漏斗的容积为;正视图为该几何体的轴截面,设该漏斗外接球的半径为,设球心为,则,因为,又,所以,整理可得,解得,所以该漏斗存在外接球,则故答案为:①;②.12、36【解析】首先根据弧长公式求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:依题意、cm,所以,即cm,所以;故答案为:13、【解析】△ABC中,由tanA=1,求得A的值【详解】∵△ABC中,tanA=1>0,故∴A=故答案为【点睛】本题主要考查三角函数的化简,及与三角形的综合,应注意三角形内角的范围14、【解析】根据最大值得,再由图像得周期,从而得,根据时,取得最大值,利用整体法代入列式求解,再结合的取值范围可得.【详解】根据图像的最大值可知,,由,可得,所以,再由得,,所以,因为,所以,故函数的解析式为.故答案为:.15、【解析】根若对于任意的∈,总存在,使得g(x0)=f(x1)成立,得到函数f(x)在上值域是g(x)在上值域的子集,然后利用求函数值域之间的关系列出不等式,解此不等式组即可求得实数a的取值范围即可【详解】∵,∴f(0)≤f(x)≤f(1),即0≤f(x)≤4,即函数f(x)的值域为B=[0,4],若对于任意的∈,总存在,使得g(x0)=f(x1)成立,则函数f(x)在上值域是g(x)在上值域A的子集,即B⊆A①若a=0,g(x)=0,此时A={0},不满足条件②当a≠0时,在是增函数,g(x)∈[﹣+3a,],即A=[﹣+3a,],则,∴综上,实数a的取值范围是故答案为【点睛】本题主要考查了函数恒成立问题,以及函数的值域,同时考查了分类讨论的数学思想,属于中档题16、2【解析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据函数是偶函数,结合偶函数的定义,求参数的值;(2)由题意可知恒成立,分离参数后可得,转化求函数的值域,即可求得的取值范围.【小问1详解】,所以,因为函数的图像关于轴对称,函数是偶函数,所以,即,解得:;【小问2详解】,由题意可知,恒成立,即,转化为,令,函数的值域是,所以.18、(1)400;(2)不能获利,至少需要补贴35000元.【解析】(1)每月每吨的平均处理成本为,利用基本不等式求解即得最低成本;(2)写出该单位每月的获利f(x)关于x的函数,整理并利用二次函数的单调性求出最值即可作答.【小问1详解】由题意可知:,每吨二氧化碳的平均处理成本为:,当且仅当,即时,等号成立,∴该单位每月处理量为400吨时,每吨平均处理成本最低;【小问2详解】该单位每月的获利:,因,函数在区间上单调递减,从而得当时,函数取得最大值,即,所以,该单位每月不能获利,国家至少需要补贴35000元才能使该单位不亏损.19、(1)(2)【解析】(1)任意角的三角函数的定义求得x的值,可得sinα和tanα的值,再利用同角三角函数的基本关系,求得要求式子的值;(2)利用两角和差的三角公式、二倍角公式,化简所给的式子,可得结果【详解】由条件知,解得,故.故,(1)原式==(2)原式.【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,两角和差的三角公式的应用,属于基础题20、(1);(2)存在,.【解析】(1)首先求出在上的最大值,问题转化为对任意成立,然后化简不等式,参变分离构造即可.(2)分a>0和a<0两种情况讨论,去掉绝对值符号,转化为解不等式的问题.【小问1详解】,,,∴,∴原问题对任意成立,即对任意成立,即对任意成立,∴.故a的范围是:.【小问2详解】①,,∵,∴,∴不等式变为,∴;(2),,∵,∴此时无解.综上所述,存在满足题意.21、(1)证明见解析;(2)8.【解析】(1)由平行四边形的性质及勾股定理可得,再由面面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郑州商贸旅游职业学院《单片机应用课程设计》2023-2024学年第一学期期末试卷
- 小学2024年艺术教育发展年度报告
- 浙江电力职业技术学院《纤维化学与物理学》2023-2024学年第一学期期末试卷
- 长春大学《卫生财务管理》2023-2024学年第一学期期末试卷
- 生产调度中的敏捷性管理策略
- 餐饮新员工安全训练模板
- AI企业技术路演模板
- 水的化学属性模板
- 生物制药业策略讲解模板
- 亲子活动相册制作模板
- 资金审批权限管理规定
- 《工业园区节水管理技术规范(征求意见稿)》编制说明
- GB/T 44186-2024固定式压缩空气泡沫灭火系统
- 血液净化十大安全目标
- 福建省漳州市2024年高一下数学期末调研模拟试题含解析
- 中国保险行业协会官方-2023年度商业健康保险经营数据分析报告-2024年3月
- 家具桌子设计说明
- DB32T3622-2019水利地理信息图形标示
- 2024年代理记账工作总结6篇
- 4D厨房管理对比
- 2024年大型集团公司IT信息化顶层规划报告
评论
0/150
提交评论