2025届广东省深圳市罗湖区罗湖外国语学校数学高一上期末调研模拟试题含解析_第1页
2025届广东省深圳市罗湖区罗湖外国语学校数学高一上期末调研模拟试题含解析_第2页
2025届广东省深圳市罗湖区罗湖外国语学校数学高一上期末调研模拟试题含解析_第3页
2025届广东省深圳市罗湖区罗湖外国语学校数学高一上期末调研模拟试题含解析_第4页
2025届广东省深圳市罗湖区罗湖外国语学校数学高一上期末调研模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省深圳市罗湖区罗湖外国语学校数学高一上期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线l1:2x+y-1=0与l2:y=kx-1平行,则l1,l2之间的距离等于()A. B.C. D.2.直线的倾斜角为A.30° B.60°C.120° D.150°3.某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处应依次写上A.快、新、乐 B.乐、新、快C.新、乐、快 D.乐、快、新4.已知点P(cosα,sinα),Q(cosβ,sinβ),则的最大值是()A. B.2C.4 D.5.在的图象大致为()A. B.C. D.6.若,,,则()A. B.C. D.7.已知实数满足方程,则的最小值和最大值分别为()A.-9,1 B.-10,1C.-9,2 D.-10,28.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割,如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是两底角为的等腰三角形(另一种是两底角为的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,.根据这些信息,可得sin54°=()A. B.C. D.9.如图是某班名学生身高的频率分布直方图,那么该班身高在区间内的学生人数为A. B.C. D.10.已知向量且,则x值为().A.6 B.-6C.7 D.-7二、填空题:本大题共6小题,每小题5分,共30分。11.已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是__________12.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________13.设函数,则________.14.已知函数对任意不相等的实数,,都有,则的取值范围为______.15.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是_______16.函数的值域为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数.(1)用五点作图法画出函数一个周期图象,并求函数的振幅、周期、频率、相位;(2)此函数图象可由函数怎样变换得到.18.已知二次函数图象经过原点,函数是偶函数,方程有两相等实根.(1)求的解析式;(2)若对任意,恒成立,求实数的取值范围;(3)若函数与的图像有且只有一个公共点,求实数的取值范围.19.设(1)分别求(2)若,求实数的取值范围20.如图,天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景摩天轮,是天津的地标之一.永乐桥分上下两层,上层桥面预留了一个长方形开口,供摩天轮轮盘穿过,摩天轮的直径为110米,外挂装48个透明座舱,在电力的驱动下逆时针匀速旋转,转一圈大约需要30分钟.现将某一个透明座舱视为摩天轮上的一个点,当点到达最高点时,距离下层桥面的高度为113米,点在最低点处开始计时.(1)试确定在时刻(单位:分钟)时点距离下层桥面的高度(单位:米);(2)若转动一周内某一个摩天轮透明座舱在上下两层桥面之间的运行时间大约为5分钟,问上层桥面距离下层桥面的高度约为多少米?21.设函数.(1)求函数的最小正周期和对称轴方程;(2)求函数在上的最大值与最小值及相对应的的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据两直线平行求得k的值,再求两直线之间的距离【详解】直线l2的方程可化为kx-y-1=0,由两直线平行得,k=-2;∴l2的方程为2x+y+1=0,∴l1,l2之间的距离为故选B【点睛】本题考查了直线平行以及平行线之间的距离应用问题,是基础题2、A【解析】直线的斜率为,所以倾斜角为30°.故选A.3、A【解析】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,即可得出结论【详解】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,故选A【点睛】本题考查四棱锥的结构特征,考查学生对图形的认识,属于基础题.4、B【解析】,则,则的最大值是2,故选B.5、C【解析】先由函数为奇函数可排除A,再通过特殊值排除B、D即可.【详解】由,所以为奇函数,故排除选项A.又,则排除选项B,D故选:C6、C【解析】先由,可得,结合,,可得,继而得到,,转化,利用两角差的正弦公式即得解【详解】由题意,故故又,故,则故选:C【点睛】本题考查了两角和与差的正弦公式、同角三角函数关系综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题7、A【解析】即为y-2x可看作是直线y=2x+b在y轴上的截距,当直线y=2x+b与圆相切时,纵截距b取得最大值或最小值,此时,解得b=-9或1.所以y-2x的最大值为1,最小值为-9故选A.8、C【解析】先求出,再借助倍角公式求出,通过诱导公式求出sin54°.【详解】正五边形的一个内角为,则,,,所以故选:C.9、C【解析】身高在区间内的频率为人数为,选C.点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1;频率分布直方图中组中值与对应区间概率乘积的和为平均数;频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.10、B【解析】利用向量垂直的坐标表示可以求解.【详解】因为,,所以,即;故选:B.【点睛】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】设铜球的半径为,则,得,故答案为.12、55【解析】用减去销量为的概率,求得日销售量不低于50件的概率.【详解】用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55.故答案为:【点睛】本小题主要考查根据频率分布直方图计算事件概率,属于基础题.13、6【解析】根据分段函数的定义,分别求出和,计算即可求出结果.【详解】由题知,,,.故答案为:6.【点睛】本题考查了分段函数求函数值的问题,考查了对数的运算.属于基础题.14、【解析】首先根据题意得到在上为减函数,从而得到,再解不等式组即可.【详解】由题知:对任意不相等的实数,,都有,所以在上为减函数,故,解得:.故答案为:【点睛】本题主要考查分段函数的单调性,同时考查了对数函数的单调性,属于简单题.15、【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.考点:圆锥的侧面展开图与体积.16、【解析】由函数定义域求出的取值范围,再由的单调性即可得解.【详解】函数的定义域为R,而,当且仅当x=0时取“=”,又在R上单调递减,于是有,所以函数的值域为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)答案见解析【解析】(1)由分别等于,计算描点作图,并由三角函数性质求解(2)根据三角函数图象变换规则作答【小问1详解】列表:0020-20描点连线(如图):振幅:2,周期,频率,相位:【小问2详解】把的图象向右平移个单位,然后图象上所有点的的横坐标扩大为原来的3倍,纵坐标不变,再把所得图象上所有点的横坐标不变,纵坐标扩大为原来的2倍,得图象的解析式为18、(1);(2);(3).【解析】(1)运用待定系数法,结合题目条件计算得,(2)分离参量,计算在上的最大值(3)转化为有且只有一个实数根,换元,关于的方程只有一个正实根,转化为函数问题解析:(1)设.由题意,得.∴,∵是偶函数,∴即.①∵有两相等实根,∴且②由①②,解得,∴.(2)若对任意,恒成立,只须在恒成立.令,,则.若对任意,恒成立,只须满足.∴.(3)函数与的图像有且只有一个公共点,即有且只有一个实数根,即有且只有一个实数根.令,则关于的方程(记为式)只有一个正实根.若,则不符合题意,舍去.若,则方程的两根异号,∴即.或者方程有两相等正根.解得∴.综上,实数取值范围是.点睛:本题是道综合题19、(1);或(2)【解析】(1)解不等式,直接计算集合的交集并集与补集;(2)根据集合间的计算结果判断集合间关系,进而确定参数取值范围.【小问1详解】解:解不等式可得,,所以,或,或;【小问2详解】解:由可得,且,所以,解得,即.20、(1)米.(2)米.【解析】(1)如图,建立平面直角坐标系,以为始边,为终边的角为,计算得到答案.(2)根据对称性,上层桥面距离下层桥面的高度为点在分钟时距离下层桥面的高度,计算得到答案.【详解】(1)如图,建立平面直角坐标系.由题可知在分钟内所转过的角为,因为点在最低点处开始计时,所以以为始边,为终边的角为,所以点的纵坐标为,则(),故在分钟时点距离下层桥面的高度为(米).(2)根据对称性,上层桥面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论