湖南省邵阳市洞口县第九中学2025届数学高一上期末质量检测模拟试题含解析_第1页
湖南省邵阳市洞口县第九中学2025届数学高一上期末质量检测模拟试题含解析_第2页
湖南省邵阳市洞口县第九中学2025届数学高一上期末质量检测模拟试题含解析_第3页
湖南省邵阳市洞口县第九中学2025届数学高一上期末质量检测模拟试题含解析_第4页
湖南省邵阳市洞口县第九中学2025届数学高一上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵阳市洞口县第九中学2025届数学高一上期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是两个不同的平面,是直线且,,若使成立,则需增加条件()A.是直线且, B.是异面直线,C.是相交直线且, D.是平行直线且,2.若,则的值是()A. B.C. D.13.某甲、乙两人练习跳绳,每人练习10组,每组40个.每组计数的茎叶图如下图,则下面结论中错误的一个是()A.甲比乙的极差大B.乙的中位数是18C.甲的平均数比乙的大D.乙的众数是214.如果函数对任意的实数x,都有,且当时,,那么函数在的最大值为A.1 B.2C.3 D.45.(程序如下图)程序的输出结果为A.3,4 B.7,7C.7,8 D.7,116.已知函数(,),若的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,则的取值范围是()A. B.C. D.7.命题“”的否定为()A. B.C. D.8.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A. B.C. D.9.若函数的定义域是()A. B.C. D.10.已知,方程有三个实根,若,则实数A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.圆:与圆:的公切线条数为____________.12.若幂函数的图象过点,则___________.13.设函数则的值为________14.已知,则的大小关系是___________________.(用“”连结)15.若函数在区间内有最值,则的取值范围为_______16.在正三棱柱中,为棱的中点,若是面积为6的直角三角形,则此三棱柱的体积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某形场地,,米(、足够长).现修一条水泥路在上,在上),在四边形中种植三种花卉,为了美观起见,决定在上取一点,使且.现将铺成鹅卵石路,设鹅卵石路总长为米.(1)设,将l表示成的函数关系式;(2)求l的最小值.18.已知函数的图象关于原点对称(1)求实数b的值;(2)若对任意的,有恒成立,求实数k的取值范围19.已知函数.(1)求函数的定义域;(2)若,求值;(3)求证:当时,20.已知函数(1)求的最小正周期和对称中心;(2)填上面表格并用“五点法”画出在一个周期内的图象21.(1)已知函数(其中,,)的图象与x轴的交于A,B两点,A,B两点的最小距离为,且该函数的图象上的一个最高点的坐标为.求函数的解析式(2)已知角的终边在直线上,求下列函数的值:

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】要使成立,需要其中一个面的两条相交直线与另一个面平行,是相交直线且,,,,由平面和平面平行的判定定理可得.故选C.2、D【解析】由求出a、b,表示出,进而求出的值.详解】由,.故选:D3、B【解析】通过茎叶图分别找出甲、乙的最大值以及最小值求出极差即可判断A;找出乙中间的两位数即可判断B;分别求出甲、乙的平均数判断C;观察乙中数据即可判断D;【详解】对于A,由茎叶图可知,甲的极差为,乙的极差为,故A正确;对于B,乙中间两位数为,故中位数为,故B错误;对于C,甲的平均数为,乙的平均数为,故C正确;对于D,乙组数据中出现次数最多为21,故D正确;故选:B【点睛】本题考查了由茎叶图估计样本数据的数字特征,属于基础题.4、C【解析】由题意可得的图象关于直线对称,由条件可得时,为递增函数,时,为递减函数,函数在递减,即为最大值,由,代入计算可得所求最大值【详解】函数对任意的实数x,都有,可得的图象关于直线对称,当时,,且为递增函数,可得时,为递减函数,函数在递减,可得取得最大值,由,则在的最大值为3故选C【点睛】本题考查函数的最值求法,以及函数对称性和单调性,以及对数的运算性质的应用,属于中档题.将对称性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据对称性判断出函数在对称区间上的单调性(轴对称函数在对称区间上单调性相反,中心对称函数在对称区间单调性相同),然后再根据单调性求解.5、D【解析】∵变量初始值X=3,Y=4,∴根据X=X+Y得输出的X=7.又∵Y=X+Y,∴输出的Y=11.故选D.6、C【解析】由已知得,,且,解之讨论k,可得选项.【详解】因为的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,所以,所以,故排除A,B;又,且,解得,当时,不满足,当时,符合题意,当时,符合题意,当时,不满足,故C正确,D不正确,故选:C.【点睛】关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于的不等式组,解之讨论可得选项.7、C【解析】“若,则”的否定为“且”【详解】根据命题的否定形式可得:原命题的否定为“”故选:C8、D【解析】根据三视图还原该几何体,然后可算出答案.【详解】由三视图可知该几何体是半径为1的球和底面半径为1,高为3的圆柱的组合体,故其表面积为球的表面积与圆柱的表面积之和,即故选:D9、C【解析】根据偶次根号下非负,分母不等于零求解即可.【详解】解:要使函数有意义,则需满足不等式,解得:且,故选:C10、B【解析】判断f(x)与2的大小,化简方程求出x1、x2、x3的值,根据得x3﹣x2=2(x2﹣x1)得出a的值【详解】由1﹣x2≥0得x2≤1,则﹣1≤x≤1,,当x<0时,由f(x)=2,即﹣2x=2得x2=1﹣x2,即2x2=1,x2,则x,①当﹣1≤x时,有f(x)≥2,原方程可化为f(x)+2f(x)﹣22ax﹣4=0,即﹣4x﹣2ax﹣4=0,得x,由﹣1解得:0≤a≤22②当x≤1时,f(x)<2,原方程可化为42ax﹣4=0,化简得(a2+4)x2+4ax=0,解得x=0,或x,又0≤a≤22,∴0∴x1,x2,x3=0由x3﹣x2=2(x2﹣x1),得2(),解得a(舍)或a因此,所求实数a故选B【点睛】本题主要考查函数与方程的应用,根据分段函数的表达式结合绝对值的应用,确定三个根x1、x2、x3的值是解决本题的关键.综合性较强,难度较大二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】将两圆的公切线条数问题转化为圆与圆的位置关系,然后由两圆心之间的距离与两半径之间的关系判断即可.【详解】圆:,圆心,半径;圆:,圆心,半径.因为,所以两圆外切,所以两圆的公切线条数为3.故答案为:312、27【解析】代入已知点坐标求出幂函数解析式即可求,【详解】设代入,即,所以,所以.故答案为:27.13、【解析】直接利用分段函数解析式,先求出的值,从而可得的值.【详解】因为函数,所以,则,故答案为.【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.14、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.15、【解析】当函数取得最值时有,由此求得的值,根据列不等式组,解不等式组求得的取值范围(含有),对赋值求得的具体范围.【详解】由于函数取最值时,,,即,又因为在区间内有最值.所以时,有解,所以,即,由得,当时,,当时,又,,所以的范围为.【点睛】本小题主要考查三角函数最值的求法,考查不等式的解法,考查赋值法,属于中档题.16、【解析】由题,设,截面是面积为6的直角三角形,则由得,又则故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)20.【解析】(1)设,可得:,;(2)利用二次函数求最值即可.试题解析:(1)设米,则即,(2),当,即时,取得最小值为,的最小值为20.答:的最小值为20.18、(1)-1(2)【解析】(1)由得出实数b的值,再验证奇偶性即可;(2)由结合函数的单调性解不等式,结合基本不等式求解得出实数k的取值范围【小问1详解】∵函数的定义域为R,且为奇函数,解得经检验,当b=-1时,为奇函数,满足题意故实数b的值为-1【小问2详解】,∴f(x)在R上单调递增,在上恒成立,在上恒成立(当且仅当x=0时,取“=”),则∴实数k的取值范围为19、(1);(2);(3)证明见解析.【解析】(1)利用真数大于零列出不等式组,其解为,它是函数的定义域.(2)把方程化为后得到,故.(3)分别计算就能得到.解析:(1)由,得函数的定义域为.(2),即,∴,∴且,∴.(3)∵,,∴时,,又∵,∴.20、(1),它的对称中心为,(2)答案见解析.【解析】(1):根据二倍角与辅助角公式化简函数为一名一角即可求解;(2):根据五点法定义列表作图即可【小问1详解】∴函数的最小正周期;令,,解得,,可得它的对称中心为,【小问2详解】x001002

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论